

Code Signing Whitepaper

What it Is, Best Practices, and Why its Important

https://casecurity.org

Introduction

Code signing is the process of digitally signing executables and scripts to confirm the identity of the

software publisher and guarantee that the code has not been altered or corrupted since it was signed.

Publicly trusted certification authorities (CAs) confirm signers’ identities and bind their public key to a code

signing certificate. The certificate is used to support validation of code signatures to a trusted root certificate in

widely distributed applications such as Windows or Java.

CAs and browsers have developed standards to manage and issue code signing certificates. The standards

ensure applications are verified and code signing specifications meet the latest cryptographic requirements.

This paper discusses how code signing works and the best practices to perform code signing.

2 | Code Signing Whitepaper

Contents

Why Code Sign? ... 4

What is Code Signing? .. 5

Verifying Code Authenticity ... 6

How to Digitally Sign Code .. 7

Code Installation Decisions ... 8

What is Time-Stamping? ... 9

Self-Signed Versus Publicly Trusted Code Signing Certificates.. 10

Code Signing Certificate Standards ... 11

Application Reputation ... 12

Code Signing: Best Practices ... 13

Conclusion ... 14

References .. 15

Code Signing Whitepaper | 3

Why Code Sign?

Most mass-market computing devices sold today come with

pre-loaded software, but the software that comes “out of the

box” with the device is not all that will be needed for the full

life of the device. Whether for a personal computer or a

mobile device, users will frequently need to download

additional software or applications. In other cases users are

often advised by an application on their device, or the site

they are visiting, that in order to experience or use the

offered service they need to upgrade, patch or augment their

current software. Users are asked to make a spot decision:

“Run or Don’t Run,” “Install or Don’t Install” or “Run or Cancel.”

In these situations, “Run/Don’t Run” asks the user whether or not to run the downloaded code. How does a user decide?

How does a user or user agent (usually a “browser”) know whether or not to trust the software?

The answer is code signing.

To help users determine whether or not they can trust software before they install it, software publishers can digitally sign

their code. A digital signature verifies who signed the code and that the code has not been subject to tampering. Digitally

signed code, which is backed by a certificate issued by a CA acting as a trusted third party, is granted greater reliability than

unsigned code. Generally, unsigned code should not be trusted, as it does not provide any evidence of origin or file

integrity, which means the publisher cannot be held accountable for errors and the code is subject to tampering.

Armed with the information provided by a digital signature, users can make a more informed “Run/Don’t Run” decision.

4 | Code Signing Whitepaper

What is Code Signing?

Code signing is the process of digitally signing executables and scripts to confirm the identity of the software author and

guarantee that the code has not been altered or corrupted since it was signed. In order to sign the code, a software publisher

needs to generate a private-public key pair and submit the public key to a CA, along with a request to issue a code signing

certificate. The CA verifies the identity of the publisher and authenticates the publisher’s digitally-signed certificate request. If

this vetting and key-verification process is successful, the CA bundles the identity of the publisher with the public key and signs

the bundle, thus creating the code signing certificate.

Armed with the code signing certificate, the publisher is ready to sign the code. When the code is signed, several pieces of

information are added to the original file holding the executable code. This bundled information is used by the software publisher’s

users to authenticate the publisher and check for code-tampering. The entire sequence for bundling the digitally-signed code

takes place as follows:

• A hash of the code is produced

• Public-key algorithms are inefficient for signing large objects, so the code is passed through a hashing algorithm, creating

a fixed-length digest of the file

• The hash is a cryptographically unique representation of the file

• The hash can be reproduced only by using the unaltered file and the hashing algorithm that was used to create the hash

• The hash is signed using the publisher’s private key

• The hash is passed through a signing algorithm using the publisher’s private key as an input

• Information about the publisher and the CA is drawn from the code signing certificate and incorporated into the signature

• The original code, signature and code signing certificate are bundled together

• The code signing certificate key is added to the bundle (as the public key is required to authenticate the code when it is verified)

Code is hashed using a Hash is signed with

 hashing algorithm private key

Code

Code Hash of Code Signed Hash

Signed
Hash

The code is now ready for distribution and is packaged in a form that will allow the user to verify for authenticity.

Code Signing Whitepaper | 5

Verifying Code Authenticity

When a user agent loads the code, it checks the authenticity of the software using the packaged signer’s public key,

signature and the hash of the file. If the signature is verified successfully, the user agent accepts the code as valid. If the

signature is not successfully verified, the user agent will react by either warning the user or rejecting the code, according to

the level of security being used. The signature is verified as follows:

Hash is Verified

• The original code is passed through the hashing algorithm to create a hash

• The public key of the publisher is extracted from the bundle and applied to the signature information; applying the

public key reveals the hash that was calculated when the file was signed

• The two hashes are compared; if equal, then the code has not changed and the signature is considered valid

Code Signing Certificate is Verified

• The code signing certificate is checked to ensure it was signed by a trusted CA

• The expiry date of the code signing certificate is checked

• The code signing certificate is checked against the revocation lists to ensure it is valid

If the hash and the certificate are valid, then the code is considered valid. As such, it is accepted by the user agent

and presented for installation. If the file is not considered valid, the user agent displays a warning message.

 Signed Hash of

Hash

Code

Code

Signed Compare hashes,

Hash

if equal the

 signature is valid

 Code hashed
Hash of

Code
using hashing

Code

algorithm

6 | Code Signing Whitepaper

How to Digitally Sign Code

Various application platforms support code signing and provide different tools to perform the signing. Here is a list of

the more common code signing types and references to where guides can be found for each given application.

Adobe AIR

Digitally signing an AIR file

Apple Mac OS X

Developer Library

Code Signing and Application

Sandboxing Guide

Microsoft Windows Macro

and Visual Basic Signing

Signing a VBA Project

Java

How to Sign Applets Using RSA-

Signed Certificates and Signing Code

and Granting it Permissions

Microsoft Authenticode

Signing and Checking Code

with Authenticode

Firefox XPI

Signing an XPI

Code Signing Whitepaper | 7

http://help.adobe.com/en_US/AIR/1.5/devappsflex/WS5b3ccc516d4fbf351e63e3d118666ade46-7ff0.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://msdn.microsoft.com/en-us/library/aa141471(v=office.10).aspx
http://docs.oracle.com/javase/1.5.0/docs/guide/plugin/developer_guide/rsa_signing.html
http://docs.oracle.com/javase/1.5.0/docs/guide/plugin/developer_guide/rsa_signing.html
http://docs.oracle.com/javase/1.5.0/docs/guide/plugin/developer_guide/rsa_signing.html
http://docs.oracle.com/javase/tutorial/security/toolsign/index.html
https://msdn.microsoft.com/en-us/library/ms537364(v=VS.85).aspx
https://msdn.microsoft.com/en-us/library/ms537364(v=VS.85).aspx
https://developer.mozilla.org/en-US/docs/Signing_a_XPI

Code Installation Decisions

The code has been signed, the user has started installation and verification has taken place. How does the user know

whether or not to accept the code?

The user must decide if they trust the software based on the

messages above. The statement provides the following:

• Program Name: “Adobe Flash Player Installer”

• Publisher Name: Adobe Systems, Incorporated

• Code Signing Certificate: The user would

need to click on the ”Show Details” drop down button,

which will display a link to review the certificate.

There are five simple steps users should take to determine whether software can be trusted:

1. Check to see if you were planning to install the software.

2. Check the file name to see if it indicates the software you were planning to install. In this case, the user is installing

Adobe Reader 10, which the name seems to indicate.

3. Check the publisher name to see if it matches who you think wrote the software. This may be difficult as the software

download site may be different than the publisher’s site.

4. Check the code signing certificate to see if the publisher’s name is in the certificate.

5. Check to see if the certificate was issued by a publicly trusted CA.

Conversely, here is a dialogue for code that may be untrustworthy:

The program name is “Install.exe,” which is not specific enough to

determine what code is being installed. The publisher’s name is

“Unknown,” which means that a public CA did not verify the code

signing certificate. The code may not be harmful, but it was likely

signed with a self-issued code signing certificate. This means the

user cannot trust who signed the code.

8 | Code Signing Whitepaper

What is Time-Stamping?

What happens to signed code when the code signing certificate expires? In many cases, an expired certificate means that

the signature validation will fail and a trust warning will appear in the user agent.

Time-stamping was designed to alleviate this problem. The idea is that if a user knows the time when the code was signed

and the certificate was confirmed to be valid, then the user will also know the signature was valid at the time the software

was published. Put another way, time-stamping is similar to a notarized handwritten signature which includes a third-

party’s confirmation of when the document was signed.

The main benefit of time-stamping is that it extends code trust beyond the validity period of the code signing certificate. The

code stays good as long as the user can run it. Also, the code signing certificate may be revoked or expire in the future, but

the code can remain trusted.

Please note that with some client software, the code verification may not be valid after the time-stamp certificate has expired.

The new Minimum Requirements for Code Signing, discussed below, will require time-stamping authorities (TSAs) to use a

time-stamping certificate with a maximum validity of 135 months that will be renewed every 15 months. As such, expect time-

stamp certificates to have a lifetime of at least 10 years.

Time-stamping the signature is implemented as follows:

• The signature is sent to the TSA.

• The TSA adds a time-stamp to the bundled information and computes a new hash.

• The TSA signs the new hash with its private key creating a new bundle of information.

• The time-stamped bundle, the original bundle (that was sent to the TSA) and the time-stamp are re-bundled with

the original code.

Upon receipt of a time-stamped signature, the following steps are completed by the user agent for verification (in addition to

verification of the signature on the code itself):

• The TSA certificate is checked to ensure it was issued from a trusted root certificate and that its status is valid.

• The TSA’s public key is applied to the time-stamped signature block, revealing the hash calculated by the TSA.

• The validity of the TSA’s public key is verified by checking its expiry date and consulting revocation lists to ensure that

it has not been revoked.

• The two hashes are compared. If the hashes are equal, the time-stamp is considered to be valid.

In the event that the code signing certificate must be revoked due to a compromise, the revocation will be made dependent

on a specific date. The idea is that code signatures issued before the revocation date will remain valid and the software

should still work.

Code Signing Whitepaper | 9

Self-Signed Versus Publicly Trusted

Code Signing Certificates

In most cases, software publishers have to sign their code in order to get it installed on an operating system. Publishers

can sign their code using a self-signed certificate or using a certificate issued by a publicly trusted CA.

Due to the costs of buying a code signing certificate from a publicly trusted CA, some publishers may decide to try a self-

signed certificate, but there are differences between the two types of certificates that should be considered.

Self-Signed Certificate Certificates Issued from

 Publicly Trusted CA

Issuer provides their own identity, which is not CA performs identity verification, which is displayed in a

published as part of the code verification security code verification security message

message

Issuer provides their own policy and quality CA issues certificates in accordance with the industry

 policy and quality

Signatures will provide a warning indicating that the Signatures will clearly identify the publisher’s name

software was created by an “Unknown Publisher”

Compromised certificates cannot be revoked and could Compromised certificates can be revoked, and if time-

harm software users stamping was used, code signed before revocation will

 remain trusted

To ensure user trust and code longevity, it is recommended that

software publishers use a certificate issued from a publicly trusted CA.

10 | Code Signing Whitepaper

Code Signing Certificate

Standards

Through 2016, there are only requirements for the management and issuance of EV code signing certificates. As of February

2017, a new standard for non-EV code signing certificates will be supported. This standard is required by Microsoft, so all

publicly trusted CAs will issue certificates to meet the requirements.

Minimum Requirements for Code Signing

The minimum requirements for code signing were not published by the CA/Browser Forum, but many of the requirements

are from their Baseline Requirements. For code signing the minimum requirements also address other items such as:

• Publisher identity: Common name is the publisher’s legal name, where the Organization name can also be the

publisher’s legal name or a DBA name.

• Minimum key size: 2048-bit RSA or ECC curves P-256, P-384 or P-521

• Validity period: Maximum validity period is 39 months.

• High Risk Requests: CAs should check databases to ensure known publishers of suspect code are not issued a

code signing certificate.

• Private Key protection: Due to suspect code being signed with compromised keys, private keys are required to be

encrypted on hardware or kept on a device separate from the host of the signing software function.

• Takeover Attack: Publishers’ with history of a takeover attack will require a higher level of private key protection

• Certificate revocation: Specific revocation and processes have been established which include revocation requests

from an application software supplier (e.g., Microsoft)

• Time-stamping: Certification authority, time-stamp certificates and time-stamp authority (TSA) requirements

have been defined.

Extended Validation (EV) Code Signing Certificates

EV code signing certificates have two distinct advantages over certificates issued to the Minimum Requirements for

Code Signing standard:

• Identity and authorization of the publisher must be completed in accordance with the CA/Browser Forum EV

Code Signing Guidelines.

• Private keys must only be managed in hardware meeting the requirements of FIPS 140-2 Level 2 or equivalent.

The upside of EV code signing certificates is users know who the publisher is and reasonable protection has been provided to

the private key to mitigate unauthorized signing. Since EV code signing certificates are more trusted, this allows developers of

verification products to raise the reputation level of the publisher or the signed code.

Please note that Windows 10 requires drivers submitted for kernel mode signing to have their submission signed with an EV

code signing certificate.

Code Signing Whitepaper | 11

Application Reputation

Social-engineering attacks are more common than attacks on security vulnerabilities. The traditional defense against

malware is a URL-based filter to screen out known malware websites. Microsoft also introduced a new defense called

SmartScreen Application Reputation.

Application Reputation allows publishers and their applications to build a positive reputation over time through these principles:

• Well-known “good” applications have a better reputation than new applications

• Well-known “good” publishers have a better reputation than unknown publishers

• New applications signed by known “good” publishers can have a relatively high reputation from first release

Reputation can be built for unsigned and signed applications. Signed applications can build reputation at twice the rate of

those that are unsigned. Reputation based on signing relies on the identification of the publisher by a trusted certification

authority and the issuance of a code-signing certificate. Reputation is built by signing ‘good’ applications, but can be easily

lost if the certificate is used to sign malware.

Traditionally, browsers have presented a User Account Control dialogue box for each application download.

SmartScreen® Filter does not present a User Account Control dialogue if the application has built a good reputation. The

benefit is that applications with good reputations will be installed without requiring the user to decide if they trust the

software — they simply choose “Save” or “Run.” This update prevents users from becoming de-sensitized to User Account

Control dialog boxes, and encourages users to make better decisions when these dialog boxes appear from applications

with unknown reputations.

12 | Code Signing Whitepaper

https://blogs.msdn.microsoft.com/ie/2011/05/17/smartscreen-application-reputation-in-ie9/

Code Signing: Best Practices

The biggest issue with code signing is the protection of the private signing key associated with the code signing certificate. If

a key is compromised, the certificate loses trust and value, jeopardizing the software that you have already signed.

Seven best practices for code signing include:

1. Minimize access to private keys

• Allow minimal connections to computers with keys

• Minimize the number of users who have key access

• Use physical security controls to reduce access to keys

2. Protect private keys with cryptographic

hardware products

• Cryptographic hardware does not allow export of the

private key to software where it could be attacked

• Use a FIPS 140 Level 2-certified product (or better)

• Use an EV code signing certificate which requires the

private key to be generated and stored in hardware

3. Time-stamp code

• Time-stamping allows code to be verified after the

certificate has expired or been revoked

4. Understand the difference between

test-signing and release-signing

• Test-signing private keys and certificates requires

less security access controls than production code

signing private keys and certificates

• Test-signing certificates can be self-signed or

come from an internal test CA

• Test certificates must chain to a completely different

root certificate than the root certificate that is used to

sign publicly released products; this precaution helps

ensure that test certificates are trusted only within the

intended test environment

• Establish a separate test code signing infrastructure to

test-sign pre-release builds of software

5. Authenticate code to be signed

• Any code that is submitted for signing should be

strongly authenticated before it is signed and released

• Implement a code signing submission and approval

process to prevent the signing of unapproved or

malicious code

• Log all code signing activities for auditing and/or

incident-response purposes

6. Virus scan code before signing

• Code signing does not confirm the safety or quality

of the code; it confirms the publisher and whether or

not the code has been changed

• Take care when incorporating code from other sources

• Implement virus-scanning to help improve the quality

of the released code

7. Do not over-use any one key (distribute

risk with multiple certificates)

• If code is found with a security flaw, then publishers

may want to prompt a User Account Control dialogue

box to appear when the code is installed in the future;

this can be done by revoking the code signing certificate

so a revoked prompt will occur

• If the code with the security flaw was issued before

more good code was issued, then revoking the

certificate will impact the good code as well

• Changing keys and certificates often will help to avoid

this conflict

Code Signing Whitepaper | 13

Conclusion

Code signing is required to install code on many platforms because it provides assurances of authenticity and origin. When

signing code software publishers have to make decisions to protect their deployed products, the most important decision one

can make is whether or not to use a trusted Certification Authority. The backing of a code signing certificate issued by a

trusted Certification Authority is the best way to ensure end-user trust Self-signed certificates should only be used for testing,

not for production releases.

The second most important decision is whether or not to time-stamp code. In the event of a compromised key, a time-

stamp may ensure that code is protected even if a certificate needs to be revoked.

The best practices section provides additional important tips for protecting the code signing private key and the quality of

signed code.

Minimum Requirements for Code Signing will increase Internet security by setting a new bar to protect private keys from

compromise. These requirements also provide a better mechanism to have code signing certificates revoked to limit the

proliferation of malware.

Extended Validation code signing certificates are the best tool available to establish trust in the security of the private key

used to sign code, and provides a higher assurance of the identity of the software publisher. Because EV code signing

provides better information about the source of software, some platforms with malware security filters give EV-signed

software better treatment in user dialog boxes during installation.

14 | Code Signing Whitepaper

References

1. CA/Browser Forum EV Code Signing Guidelines,

https://www.cabforum.org/documents.html

2. Minimum Requirements for the Issuance and Management of Publicly Trusted Code Signing

Certificates, https://casecurity.org/resources/

3. Microsoft Developer Network – Introduction to Code Signing,

http://msdn.microsoft.com/en-us/library/ms537361.aspx

4. Microsoft Windows Code-Signing Best Practices,

http://msdn.microsoft.com/en-us/windows/hardware/gg487309.aspx

5. Microsoft Technet- Deploying Authenticode with Cryptographic Hardware for Secure Software

Publishing, http://technet.microsoft.com/en-us/library/cc700803.aspx

6. Microsoft Technet – Kill Bits, http://blogs.technet.com/b/srd/archive/2008/02/06/the-

kill_2d00_bit-faq_3a00_-part-1-of-3.aspx

7. Microsoft SmartScreen and Extended Validation (EV) Code Signing Certificates,

https://blogs.msdn.com/b/ie/archive/2012/08/14/microsoft-smartscreen-amp-extended-validation-ev-code-

signing-certificates.aspx

Code Signing Whitepaper | 15

https://www.cabforum.org/documents.html
https://casecurity.org/resources/
http://msdn.microsoft.com/en-us/library/ms537361.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg487309.aspx
http://technet.microsoft.com/en-us/library/cc700803.aspx
http://blogs.technet.com/b/srd/archive/2008/02/06/the-kill_2d00_bit-faq_3a00_-part-1-of-3.aspx
http://blogs.technet.com/b/srd/archive/2008/02/06/the-kill_2d00_bit-faq_3a00_-part-1-of-3.aspx
https://blogs.msdn.com/b/ie/archive/2012/08/14/microsoft-smartscreen-amp-extended-validation-ev-code-signing-certificates.aspx
https://blogs.msdn.com/b/ie/archive/2012/08/14/microsoft-smartscreen-amp-extended-validation-ev-code-signing-certificates.aspx
https://blogs.msdn.com/b/ie/archive/2012/08/14/microsoft-smartscreen-amp-extended-validation-ev-code-signing-certificates.aspx

Web www.

is the CA Security Council?

The CASC is comprised of leading global Certificate Authorities that are committed to the exploration and promotion of best

practices that advance trusted SSL deployment and CA operations, and the security of the Internet in general.

