PKI Consortium blog
Posts by tag Firefox
Always-On SSL, Part II
February 5, 2014 by
Ben Wilson
Encryption
Firefox
Mixed Content
Policy
Qualified
SSL/TLS
The SSL/TLS protocol has more to offer than just providing you with transmission encryption. Its main benefit is that it provides a way for third parties to authenticate connections to your website over the Internet. A user who can connect to your site and retrieve information via SSL/TLS will have greater assurance and trust that information came from you. The point of Always-On SSL is that once a user is able to create an authenticated connection to your point of presence via https, then he or she should not be bounced back outside of that zone of protection. When content is communicated via HTTPS, it is because you expect to provide a level of security — and your users come to expect them as well. Once you welcome a visitor, it makes no sense to have them go back outside in order to knock. This is just one of several illustrations I’d like to present where heightened protection of a visitor should be maintained, and hopefully these examples will illustrate why Always-On SSL is the preferred method for providing web visit security.
Intermediate CA Certificates and Their Potential For Misuse For Man-In-The-Middle Attacks
January 9, 2014 by
Robin Alden
(Sectigo)
Attack
Firefox
Google
MITM
Policy
Root Program
SSL/TLS
Vulnerability
We have seen recently that Google detected that publicly trusted TLS/(SSL) certificates had been created for Google domains without having been requested by Google themselves.
The existence of such certificates might usually be taken as an indication of misissuance by the issuing CA (i.e. a failure or mistake by the CA which allowed the issuance of an end-entity certificate otherwise than in accordance with their policy) or as an indication of compromise of the issuing CA.
It’s Time for TLS 1.2
September 19, 2013 by
Wayne Thayer
Attack
BEAST
Chrome
Firefox
OCSP
RC4
SHA2
SSL 3.0
SSL/TLS
TLS 1.0
TLS 1.1
TLS 1.2
Vulnerability
In a previous post titled Getting the Most Out of SSL Part 2, we touched on the recommendation that Web servers be configured to prefer Transport Layer Security (TLS) version 1.2. With the planned release of Firefox 24 and recent release of Chrome 29 adding support for TLS 1.2, now is a great time for website administrators to make the switch.
Transport Layer Security was formerly called Secure Sockets Layer (SSL) and is the protocol that enables secure “https://” connections to websites. TLS 1.2 was defined 5 years ago in RFC 5246, and TLS 1.1 dates all the way back to RFC 4346 in 2006. Both of these versions are updates to the original standard that fix bugs and problems including vulnerability to cipher block chaining (CBC) such as the BEAST attack that made news in 2011. The authors also added newer cipher suites including a replacement for RC4, a popular cipher that has been shown to be susceptible to attack. In short, enabling TLS 1.2 is like a Windows software update – it fixes potential problems and makes your website more secure.
Firefox 23 Blocks Mixed Content
August 13, 2013 by
Wayne Thayer
Chrome
Encryption
EV
Firefox
Google
Malware
Mixed Content
Mozilla
SSL/TLS
The latest version of the Firefox Web browser from Mozilla was released on August 6th with a great new security feature called a “mixed content blocker”. In a nutshell, this feature ensures that all of the parts of a secure Website are indeed encrypted via SSL certificates. All of the data on the website is prevented from being intercepted, and it becomes more difficult to add malware into the site’s content.
RSA Recap – Securing Your Site
March 8, 2013 by
Ben Wilson
BEAST
CASC
Encryption
Firefox
Hash Function
HSTS
OpenSSL
Policy
RSA
SSL/TLS
TLS 1.1
TLS 1.2
Vulnerability
At RSA last week a few of us participated in panel discussions that focused on SSL/TLS. During the panel that I moderated on Friday, one theme we addressed was secure server configuration. One of CASC’s goals is to help harden existing SSL/TLS implementations against vulnerabilities—because most SSL/TLS exploits arise from suboptimal website configurations. These vulnerabilities and attacks can be mitigated or even eliminated with proper server configuration and good website design.