Post-Quantum

Cryptography Conference

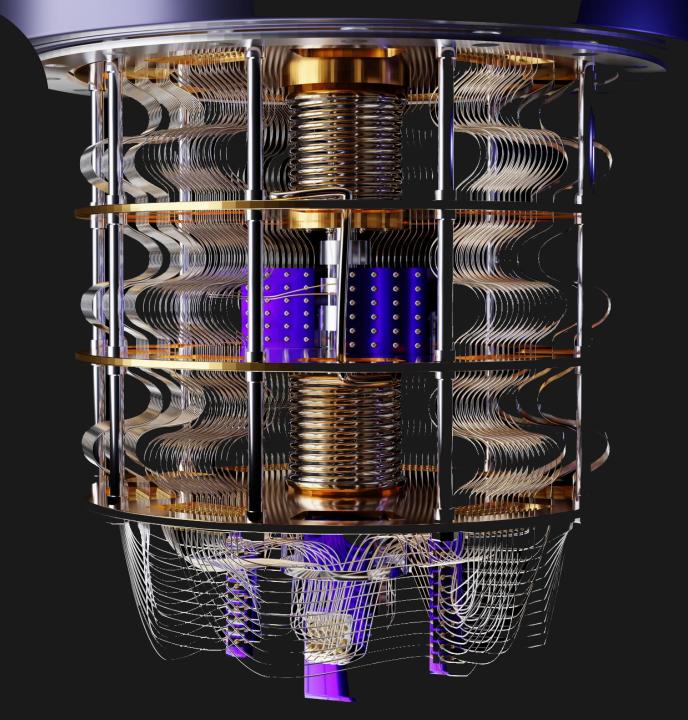
Real-World Readiness for PQC: Gaps, Gains, and Groundwork

Tomas Gustavsson Chief PKI Officer at Keyfactor

KEŸFACTOR

CRYPTO4A

October 28 - 30, 2025 - Kuala Lumpur, Malaysia



Real-world Readiness

Post-Quantum Cryptography

Tomas Gustavsson Chief PKI Officer

Steps to Quantum Readiness

Many companies are around here but can't progress until vendors/regulations are ready.

01 Inform

- Engage senior stakeholders
- Bring "comparison problem" like Y2K
- Budget requires buy-in

Talk to your vendors!

Assess the quantum-readiness of technology vendors and supply chain partners

02

Discover

- Initial mapping of critical crypto assets
- Catalog by algorithm, dependency and expiry
- Prioritize by risk: High, Med, Low

03

Automate Discovery

- Replace manual processes with automated workflows
- Build a foundation for migration at scale
- Inventory is CONTINUOUS

04

Test

- Introduce hybrid certificates
- Purge weak/outdated crypto
- Start testing quantumresistant TLS

05

Upgrade

- Upgrade your infrastructure (HSM, KMS, CLM, PKI, signing, libraries)
- Phase out CAs incompatible with PQC algos

07


Manage

 Continuously monitor and manage your enterprise cryptography through policy and automated processes 06

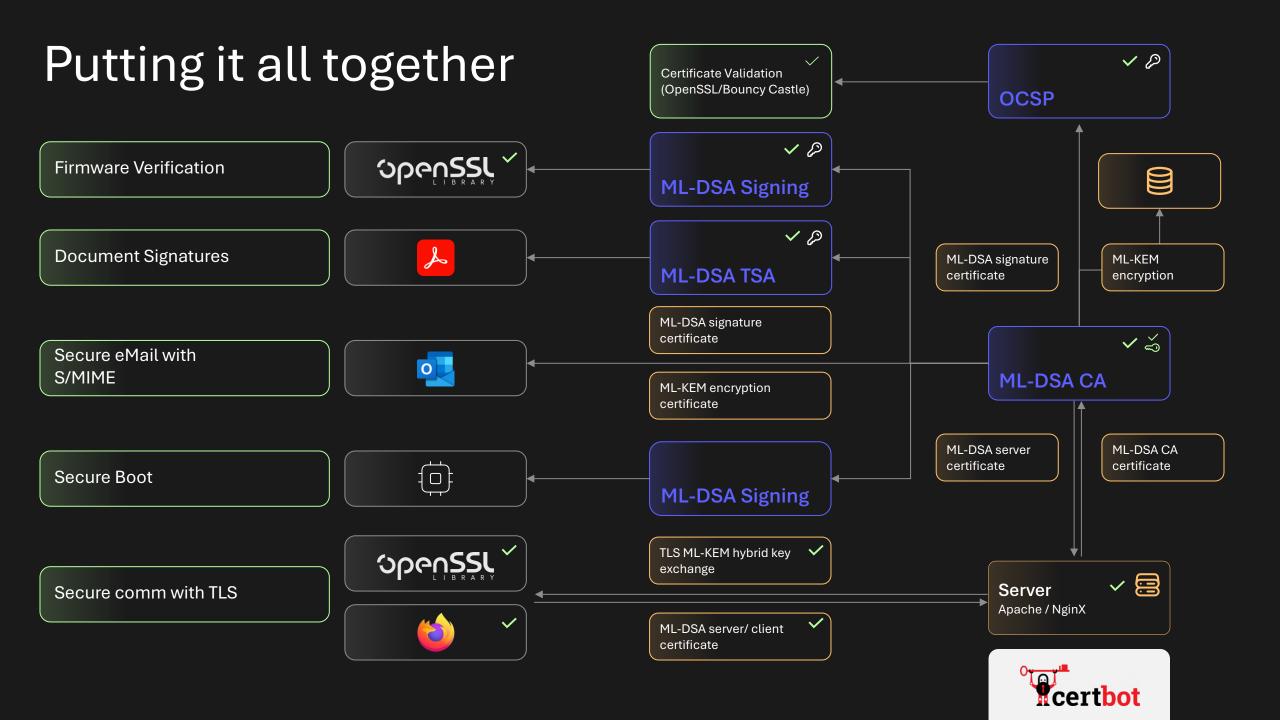
Deploy

- Begin to implement NIST
- PQC algorithms into production based on your prioritization

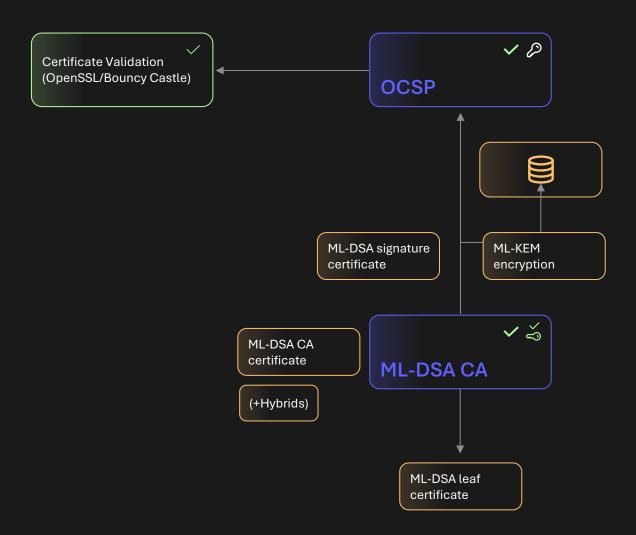
Standards

September 2025 Heatmap: Current State of PQC Standards and Adoption

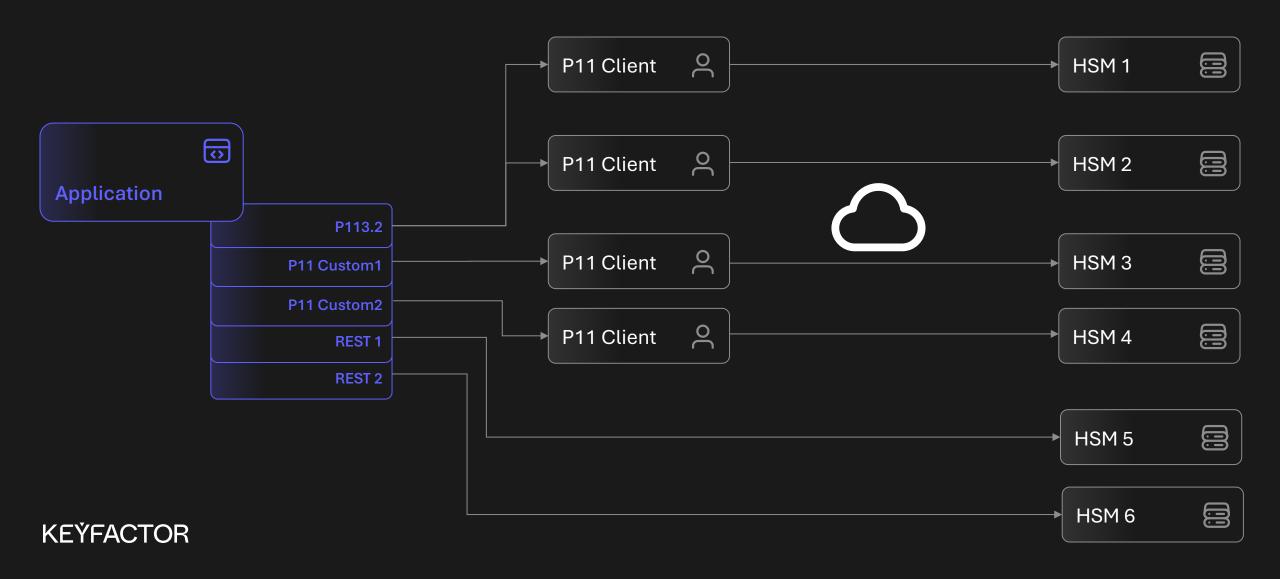
Source: https://pqcc.org/, October 1, 2025


https://pqcc.org/international-pqc-requirements/

KEÝFACTOR

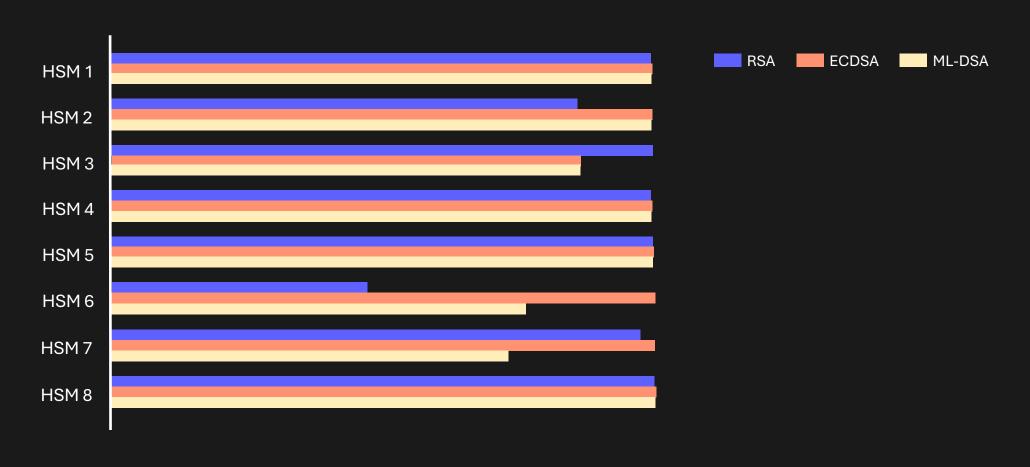

atmap					
	Overall	Pure	Hybrid	Pure	Hybrid
Standard	Range	PQC encrypt	PQ encrypt	PQ sig	PQ sig
SSH	3 to 8	3	8	3	3
TLS 1.2 ¹	0 to 0	0	0	0	0
TLS 1.3 ²	3 to 9	7	9	7	3
X.509 ³	4 to 7	7	4	7	4
S/MIME	3 to 7	5	3	7	3
OpenPGP	2 to 4	2	4	4	4
IKE/IPSec	2 to 8	8	8	3	2
MLS	2 to 4	4	4	4	2
DNSSec	1 to 1	-	-	1	1

Migration?

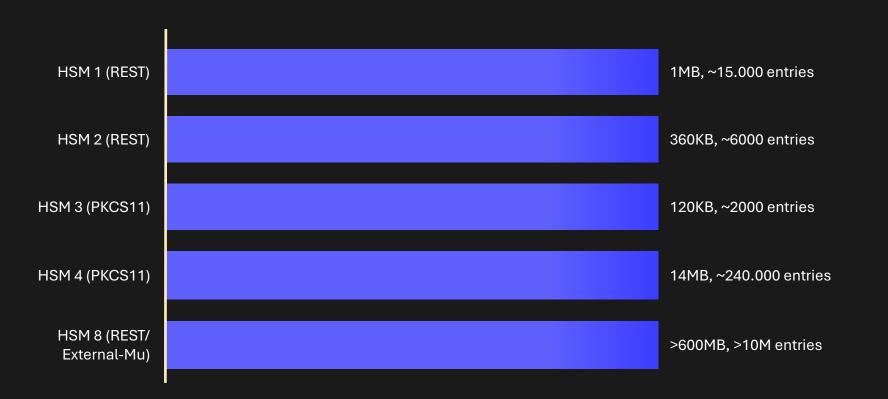


PKI

HSM Integration in Practice



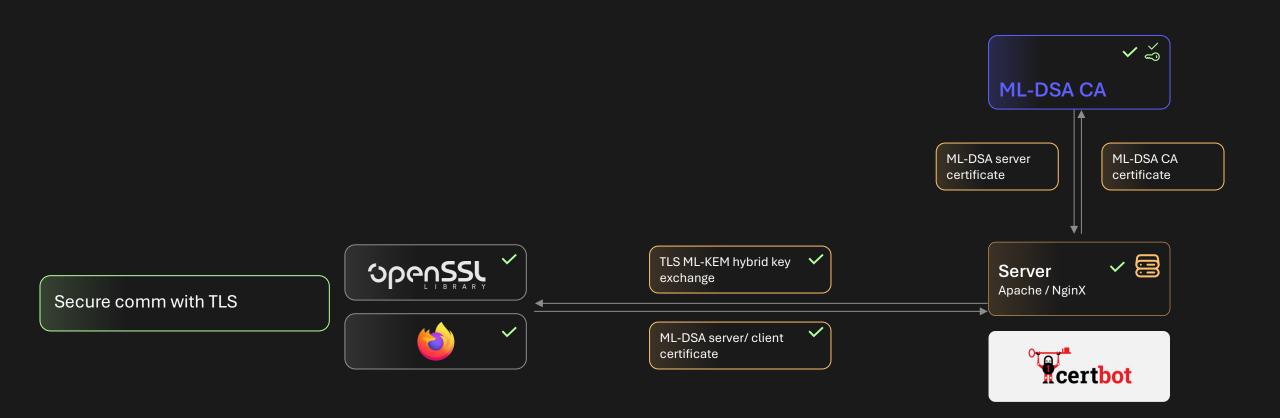
PQC in Practice


Certificate/OCSP Performance

PKCS#11 or REST

KEŸFACTOR

CRL size limits (ML-DSA)



Sizes vary

- · Certificates are small
- CRLs are small to large
- · Bank transactions are small
- Documents are small to medium
- Firmware is large to huge

ExternalMu-ML-DSA saves the day! (where CMS w/ signed attributes doesn't)

TLS

Off-the-shelf TLS

- Ubuntu 25.10 OpenSSL 3.5
- RHEL 10 OQS (test), RHEL 10.1 OpenSSL 3.5

Red Hat blog \rightarrow

- Alpine, CentOS Stream, Debian, SUSE, ...
- Windows Insiders

Microsoft blog →

Ubuntu 25.10 - OpenSSL 3.5

- apt install apache2
- a2enmod ssl

```
<VirtualHost *:443>
    ServerName www.classic.com
    DocumentRoot /var/www/classic
    SSLEngine on
    SSLCertificateFile /home/user/openssl/apache2/classic-cert.pem
    SSLCertificateKeyFile /home/user/openssl/apache2/classic-key.pem
    SSLCertificateChainFile /home/user/openssl/apache2/classic-ca.pem
</VirtualHost>
```

onnection.

Protocol version: "TLSv1.3"

Cipher suite: "TLS_AES_128_GCM_SHA256"

Key Exchange Group: "mlkem768x25519"

Signature Scheme: "ECDSA-P256-SHA256"

Host classic:

HTTP Strict Transport Security: "Disabled"

Public Key Pinning: "Disabled"

Certificate:

Ubuntu 25.10 - OpenSSL 3.5

- apt install apache2
- a2enmod ssl

```
<VirtualHost *:443>
    ServerName www.pqc.com
    DocumentRoot /var/www/pqc
    SSLEngine on
    SSLCertificateFile /home/user/openssl/apache2/pqc-cert.pem
    SSLCertificateKeyFile /home/user/openssl/apache2/pqc-key.pem
    SSLCertificateChainFile /home/user/openssl/apache2/pqc-ca.pem
</VirtualHost>
```


Secure Connection Failed

An error occurred during a connection to www.pqc.com. Canno common encryption algorithm(s).

Error code: SSL_ERROR_NO_CYPHER_OVERLAP

- The page you are trying to view cannot be shown because the authe verified.
- Please contact the website owners to inform them of this problem.

Learn more...

```
Connecting to 127.0.0.1

CONNECTED(0000003)

depth=1 CN=PQC MLDSA Root

verify return:1

depth=0 CN=pqc
---

Certificate chain
0 s:CN=pqc
i:CN=PQC MLDSA Root
a:PKEY: ML-DSA-44, 10496 (bit); sigalg: ML-DSA-44
v:NotBefore: Aug 18 09:46:28 2025 GMT; NotAfter: May 16 09:46:27 2026 GMT
```

>openssl s_client -CAfile pqc-ca.pem -connect www.pqc.com:443

```
Peer signature type: mldsa44

Negotiated TLS1.3 group: X25519MLKEM768
---

SSL handshake has read 11879 bytes and written 1633 bytes

Verification: OK
---

New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384

Protocol: TLSv1.3

Server public key is 10496 bit

Verify return code: 0 (ok)

Post-andshake New Session Ticket arrived:

SSL-Session:

Protocol: TLSv1.3

Cipher: TLS_AES_256_GCM_SHA384
```

```
>apt install curl (8.14.1)
>snap install curl (8.16.0)
>curl --cacert pqc-ca.pem https://www.pqc.com:443 -iv

* Host www.pqc.com:443 was resolved.

* IPv6: (none)

* IPv4: 127.0.0.1

* Trying 127.0.0.1:443...

* ALPN: curl offers h2,http/1.1

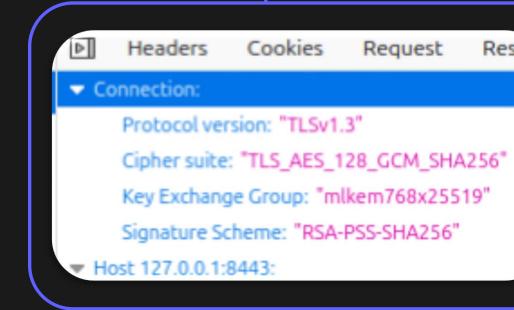
* TLSv1.3 (OUT), TLS handshake, Client hello (1):

* CAfile: /home/user/pqc-ca.pem
```

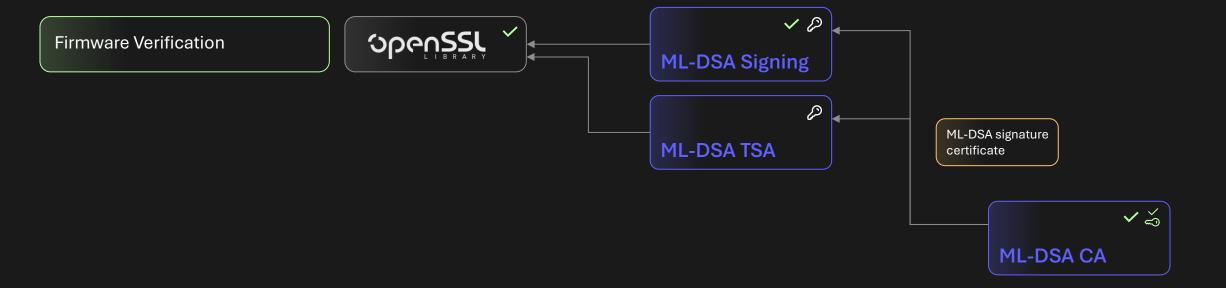
- * SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384 / X25519MLKEM768 / id-ml-dsa-44
- * Server certificate:
- * subject: CN=pqc
- * subjectAltName: host "www.pqc.com" matched cert's "www.pqc.com
- * issuer: CN=PQC MLDSA Root
- * SSL certificate verify ok.
- * Certificate level 0: Public key type ML-DSA-44 (10496/128 Bits/secBits), signed using ML-DSA-44
- * Certificate level 1: Public key type ML-DSA-44 (10496/128 Bits/secBits), signed using ML-DSA-44
- * Connected to www.pqc.com (127.0.0.1) port 443

```
>openssl req -newkey ML-DSA-44 -out mldsa.csr
>sudo certbot certonly --server
https://ejbca.example.com:8442/ejbca/acme/directory -d
www.pqc.com --apache --agree-tos --email
admin@example.com --no-eff-email --csr mldsa.csr --dry-
run
>certbot --help security
...
--key-type {rsa,ecdsa}
```

certbot


>vim /usr/lib/jvm/java-17-openjdk-amd64/conf/security/java.security

security.provider.1=BC


security.provider.2=BCJSSE BC

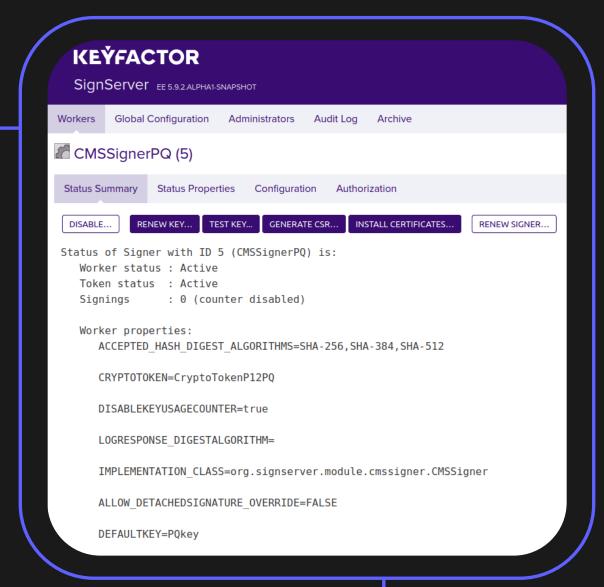
>vim /opt/wildfly/bin/standalone.conf

JAVA_OPTS="\$JAVA_OPTS --module-path=/opt/bc-module-jars"

Signing

Off-the-shelf CMS

CMS


- attached or detached signatures
- signed or unsigned attributes

```
CMSSignedDataGenerator gen = new CMSSignedDataGenerator();
final ContentSigner signer = new
JcaContentSignerBuilder(ML-DSA).build(private);

> openssl cms -verify -in something-to-sign.txt-
   detached.p7s -inform DER -CAfile
   MLDSA44.cacert.pem -content something-to-
   sign.txt -binary

Here is something to sign

CMS Verification successful
```


KEYFACTOR

Stumbling blocks

Time Stamping

```
TimeStampResponseGenerator tsRespGen = new TimeStampResponseGenerator(tsTokenGen,
   TSPAlgorithms.ALLOWED);
   TimeStampResponse tsResp = tsRespGen.generate(request, new BigInteger("23"), new
   Date());
   byte[] tsrBytes = tsResp.getEncoded();

> openssl ts -verify -in test.tsr -data test.txt -CAfile TSA.cacert.pem
Verification: FAILED
80AB6C2187720000:error:1780006D:time stamp
   routines:TS_RESP_verify_signature:signature
   failure:crypto/ts/ts_rsp_verify.c:148:
```


KEYFACTOR

Stumbling blocks

Compliance

- <u>draft-ietf-lamps-cms-ml-dsa</u> SHA-2, SHA-3, SHAKE
- CNSA 2.0 profile SHA-2
- Default(ed) to digest algorithm used in signature (SHAKE for ML-DSA, SHA512 for SHA512WithRSA... all variant work but CNSA compliance may be a thing

```
CMSSignedDataGenerator gen = new CMSSignedDataGenerator();
final ContentSigner signer = new JcaContentSignerBuilder(ML-DSA).build(private);
final JcaDigestCalculatorProviderBuilder dbuilder = new JcaDigestCalculatorProviderBuilder();
final JcaSignerInfoGeneratorBuilder sbuilder = new
    JcaSignerInfoGeneratorBuilder(dbuilder.build());

> sbuilder.setContentDigest(new AlgorithmIdentifier(digestAlgOID));
```


KEYFACTOR

Stumbling blocks

```
>openssl cms -sign -nodetach -outform DER -in msg.txt -out out.msg -
signer rsa-cert.pem -inkey rsa-priv.pem
```

>openssl cms -sign -nodetach -outform DER -in msg.txt -text -out out.msg
-signer mldsa-cert.pem -inkey mldsa-priv.pem

80DB4484BE7E0000:error:17000080:CMS routines:CMS_add1_signer:no default digest:crypto/cms/cms_sd.c:405:pkey nid=-1

>openssl cms -sign -nodetach -outform DER -in msg.txt -text -out out.msg
-signer mldsa-cert.pem -inkey mldsa-priv.pem -md SHA512/SHAKE256

KEŸFACTOR

Hybrid certificates

Hybrid/Chimera Certificate Testing

Issue Hybrid Certificate (X.509 altPublicKey/Sig) to popular products. TLS cert chains with RSA/EC+ML-DSA (Root CA -> Server/Client cert)

Servers (work - ignores ML-DSA as expected)

- WildFly 26 with JKS keystore
- Apache Httpd 2.4.55 with PEM keystore
- Enrolling for using CertBot (ACME) provided with a hybrid CSR

Clients (work - ignores ML-DSA as expected)

- Firefox 120 as TLS client with a hybrid client cert
- B-L4S5I-IOT01A (Cortex-M4) with an ISM43362 WiFi module, running mBedOS 6.17.0 and mBedTLS with hybrid client cert for mTLS

Only one private key used on client!

Chimera TLS (authentication) Testing

Bouncy Castle, WolfSSL and Wells Fargo on X9.146 CKS (PQC Conference January 2025)

Working PoC

- Server have dual keys and hybrid (or dual) certificate(s)
- If client signals support for ML-DSA for authentication it is used
- If client does not support ML-DSA, RSA or EC is used for authentication
- Successful PoC, standard is not finished

Complex migrations

Composite Certificate Testing

Composite ML-DSA for use in X.509 Public Key Infrastructure

Bouncy Castle

- Draft 7, July 2025 (breaking change)
- No backwards compatibility belts and suspenders model
- Anticipated industry adoption for specific use cases
 - o Code signing/secure boot

Full stack migrations

Protocols and Crypto Agility

CMP

Plain signatures of small data

CRMF (incl ML-KEM) or PKCS#10 CSRs

EST

TLS and plain, small signatures

PKCS#10 CSRs (ML-DSA only)

ACME

TLS and small challenges

PKCS#10 CSRs (ML-DSA only)

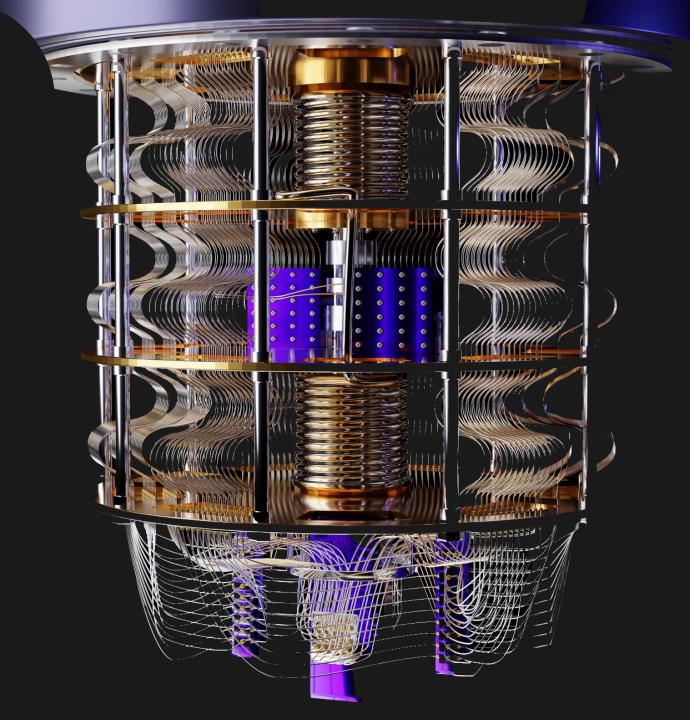
SCEE

Signing and encryption based on CMS

Requires standards update

Summary

- Is there time to procrastinate? X No
- Is it easy to start a PoC? Yes
- Will you find issues along the way? ✓ Yes
- Is everything production ready? X No
- Can you contribute Yes
- Is it expensive to start testing X No
- Hybrids and Composites Not out of the box



A Practical Update to

Post-Quantum Cryptography

Tomas
Gustavsson
Chief PKI Officer

