Post-Quantum

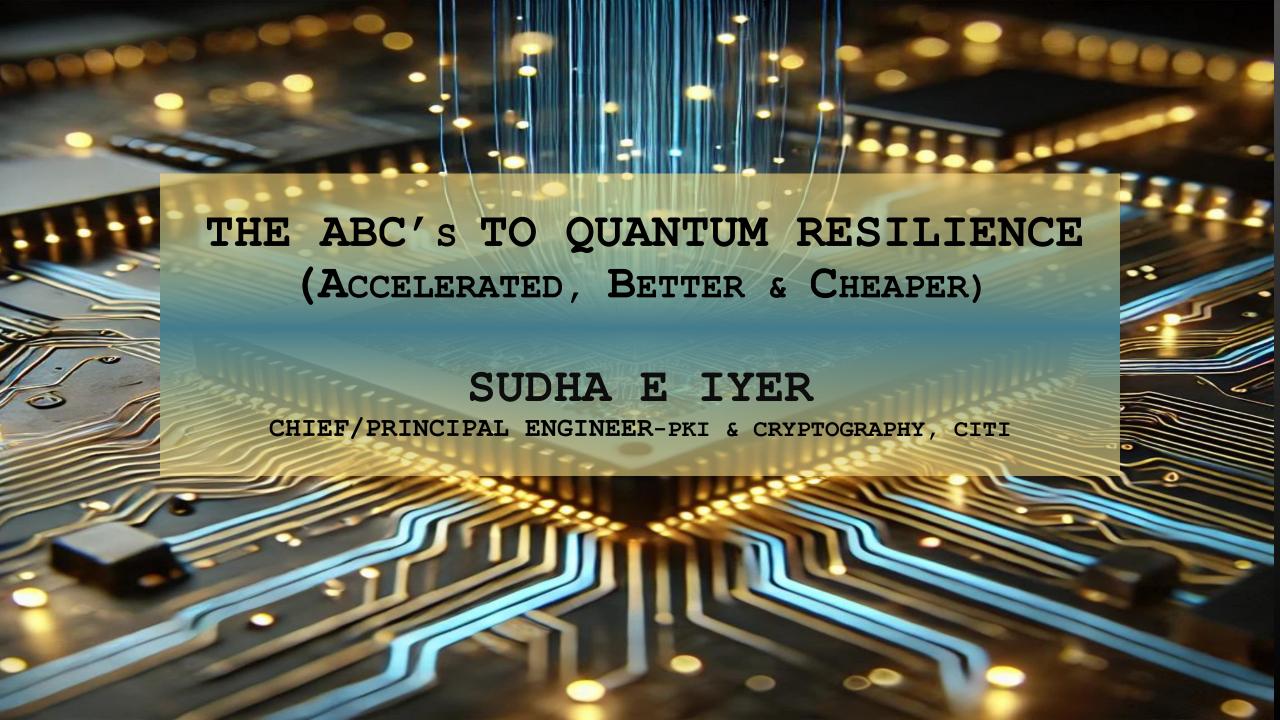
Cryptography Conference

The ABCs (Accelerated, Better and Cheaper) to Cryptographic Resilience

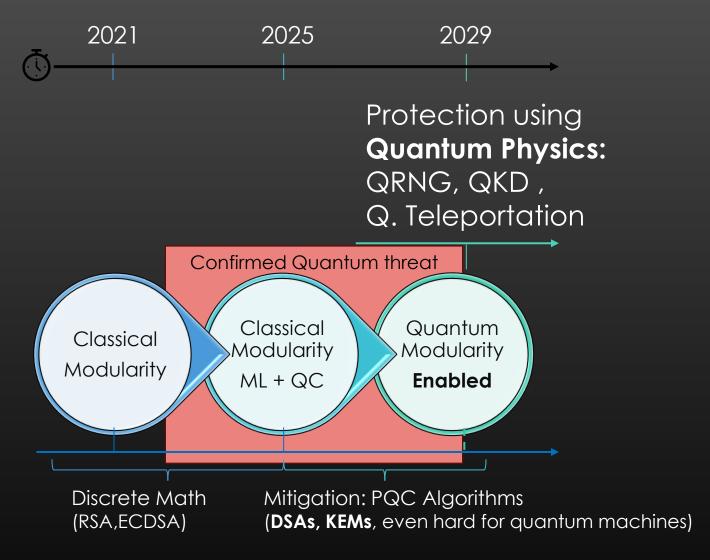
Sudha lyer
Chief/Principal Engineer-PKI & Cryptography at Citi

KEŸFACTOR

CRYPTO4A



October 28 - 30, 2025 - Kuala Lumpur, Malaysia



OVERVIEW

Agenda:

- Where we stand today
- Why this transition is complex
 - How some are are solved using NIST and IETF
 - Key adoption challenges leaders face
- ABC: A decision framework for quantum resilience
- Roadmap to help you execute Accelerated, Better and Cheaper modernization and resilience

WHERE ARE WE NOW?

Protection using **Mathematical Hardness**

COMPLEXITIES AHEAD OF US

- Mathematical Complexity
- Implementation Complexity
- Decision Complexity

STANDARDS (NIST)

- Solved Mathematical Complexity via:
 - PQC Algorithms*: Kyber, Dilithium, Sphincs+ and Falcon, also known as FIPS 203, 204, 205 and 206.
 - Key Encapsulation Mechanisms: NIST SP 800-227.

*NIST is working on widening the selection pool.

STANDARDS (OTHERS)

- IETF Standards
 - Configuration and syntax
 - Implementation protocol
 - Interoperability and
 - Reference architectures
 - TLS, IPSEC.
 - Message Encoding signatures (JOSE/ COSE)
- PCI DSS, BSI and also Health Industry cybersecurity standards to follow later

PQC TRANSITION OPTIONS

- Hybrid & Composite choice
- Pure PQC choice
- Decoupled cryptographic designs
- Hardware Support. example: FIPS certified modules

Tune in to the panel discussion at 2:30 on 30th Oct 2025 covering this in detail

KNOWN CHALLENGES

- Legacy system dependencies
- Regulatory uncertainty
- Supply chain readiness
- Efficiency of PQC algorithms

PRODUCT READINESS

Predicted readiness

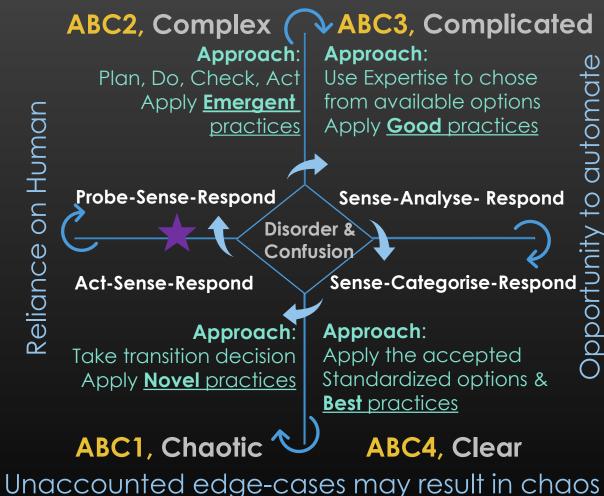
Q2 2026: Product readiness for HSMs and libraries

Q4 2028: Certification using Regional CMVP for Compliance and regulatory clarity for HSMs, offline, TEE, TPM and PCI compliant devices

Q4 2029: Standard Implementation in new firmware and OS cryptography in most products

Assumptions: Businesses and their suppliers actively volunteer in the early FIPS/ other hardware level testing to uncover operational disruptions

CYNEFIN DECISION FRAMEWORK


Process are established and repeatable

Change Definition:
Structural Challenges
Difficult to Change

Change driven by?:
Crisis

What can you do?: Risk Management

What you invest in?: Services

Change Definition: Changeable Design Enables Control

Change driven by?:

Problems

What can you do?: Fix the problem

What you invest in?: Technology

Accelerated, Better, Cheaper (ABC)
Pick from options ABC1,ABC2,ABC3 or ABC4

ROADMAP FOR YOU

- 2025-2028 (Tactical plan):
 - Build Inventory of whatever you can
 - Partner with your current vendors
 - Test all PQC developer tools and libraries
 - Document your own lessons learnt
 - Kick start your strategic replacement
 - Kick off the budget & resourcing plan
- **2029-2035** (Implementation Plan):
 - Full PQC adoption execution
 - Compliance alignment execution
 - Can review/implement QKD solutions

		You are here							
Timeline	2024	2025	2026	2028	2030	2031	2032	2033	2035
Quantum Computing Power	5k gates, Classical Modularity + Quantum Circuits		7.5k gates, Quantum Modularity	15k gates, Quantum Modularity	100 Million gates Error Corrected and stable quantum modularity		1Billion gates unlocking Fully Powerful Quantum- centric super computers		
Standards & Compliance Timeline	Initial NIST Standards & US Gov Memo	NIST include more PQC options	IETF standards Inter-op & Reference architectures	HSM, Modules and libraries certifications	PCI DSS SWIFT etc	Increased Regulatory Scrutiny	ISO, OWASP, etc	Accessibility to standardized and certified vendor options for implementation	
Org & Sector Crypto Agility & Transition Timeline	Incorporate PQC Standards in their Cyber Standards		Impact analysis of algorithms of strength less than 128 bits SHA, AES, RSA, ECDH, ECDSA.	Mandatory Replo algorithms of st less than 128 b AES, RSA, ECDH	trength its SHA,		of all RSA EC In paralle new Q	/ Retirement A, ECDH & DSA el, Evaluate uantum- d solutions	Quantum enabled Networks
Maturity	Initial					Managed		Defined	
		Tin	netable for y	vour Quanti	ım Ras	ilience			

Scaling this **cryptographic cliff** within the time is crucial.

CALL TO ACTION

- Start your tactical plan today
- Engage with active industry groups directly working with NIST, IETF, PKI Consortium and its PQC group.
- Evaluate PQC solutions with or without vendors
- Monitor NIST, IETF standards and PQC group updates
- Prepare for regulatory adoption deadlines

CLOSING THOUGHTS

- PQC transition is a mandate
- Time is running out, but resilience is achievable
- Collaboration is key to success