Post-Quantum

Cryptography Conference

Overcoming Challenges in Post-Quantum Cryptography Adoption

Frank Michaud

Principal Enginer Tech Lead for Cisco Crypo Services at Cisco

KEŸFACTOR

CRYPTO4A

October 28 - 30, 2025 - Kuala Lumpur, Malaysia

Overcoming Challenges in Post-Quantum Cryptography Adoption

Adoption Timelines and Product-Dependent Challenges

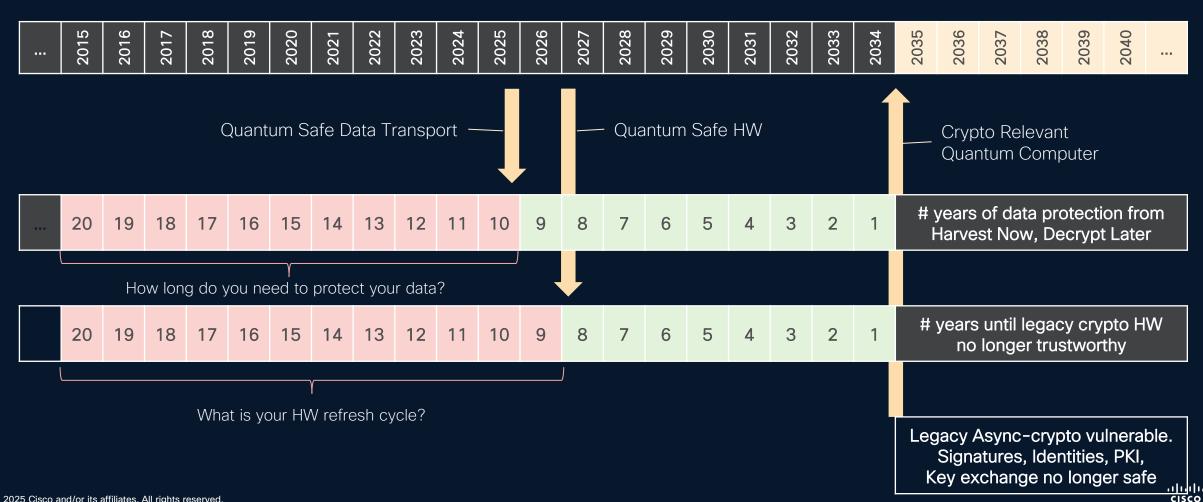
Post-Quantum Cryptography Conference - PKI Consortium

Kula Lumpur October 28 - 30, 2025

Frank Michaud, Principal Engineer

Quantum Threat & PQC Shift

- Quantum computing risk
 - RSA/ECC/DH vulnerable


- Shift in approach
 - No silver bullet, domain-specific solutions

- PQC standards in place
 - But not all standards are in place yet



Why worry today, when QC is not yet available?

Harvest Now- Decrypt Later (HNDL) vulnerability

NSA | Commercial National Security Algorithm Suite 2.0

CNSA FAQ <u>update</u> December 2024 version 2.1:

Required-by date accelerated to **January 2027**.

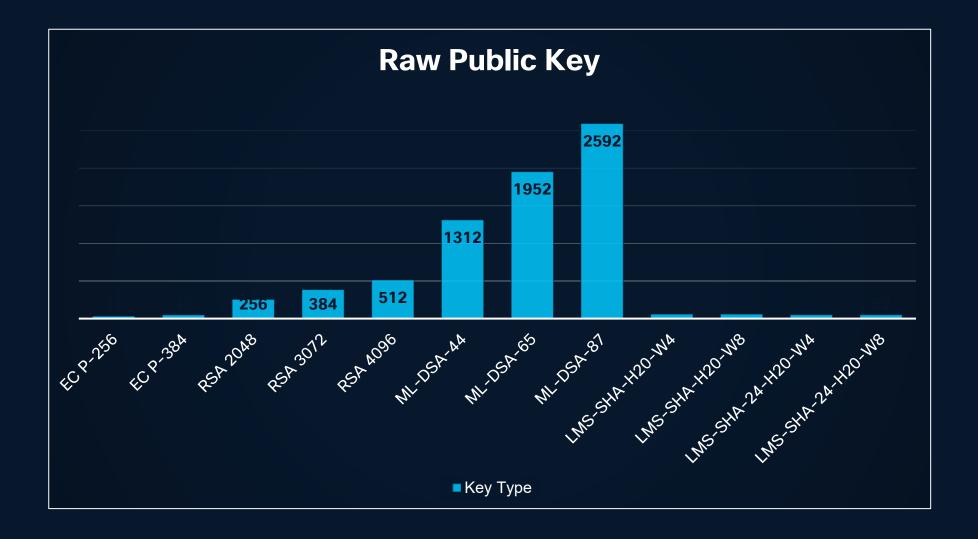
Only PQC allowed in NSS after December 2031.

Source: National Security Agency, Commercial National Security Algorithm Suite 2.0

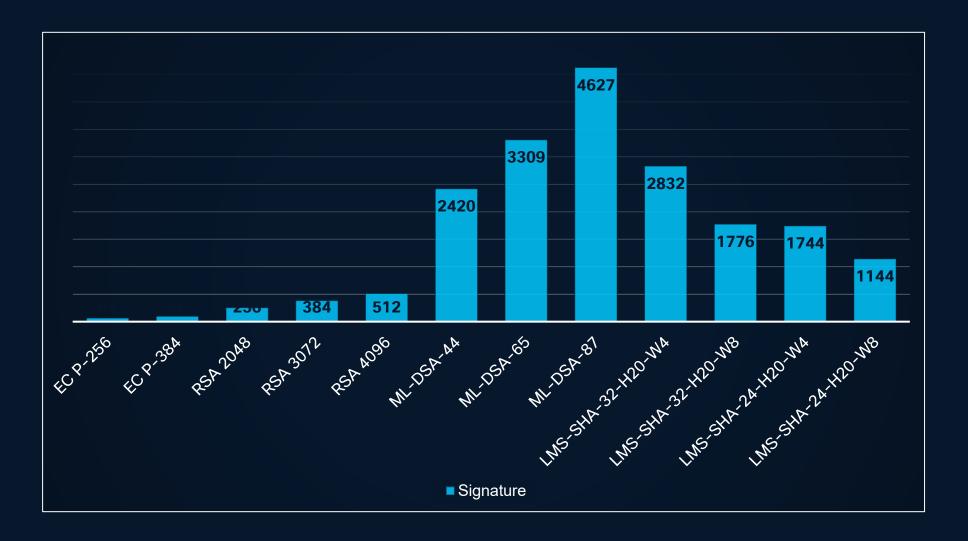
Adoption Timelines & Key Dependencies

- Dependency readiness
 - HSM, SDKs, TLS stacks, OS/toolchains
- Performance tuning
 - MTU, bandwidth, storage, latency budgets
- Protocol/profile work
 - Cert formats, hybrid modes, interop tests
- Compliance
 - FIPS, Common Criteria, CNSA 2.0, audits
- Risk controls
 - Rollback, hybrid, observability, SLOs
- Guidance
 - Multi-year embedded; weeks-months cloud hybrid

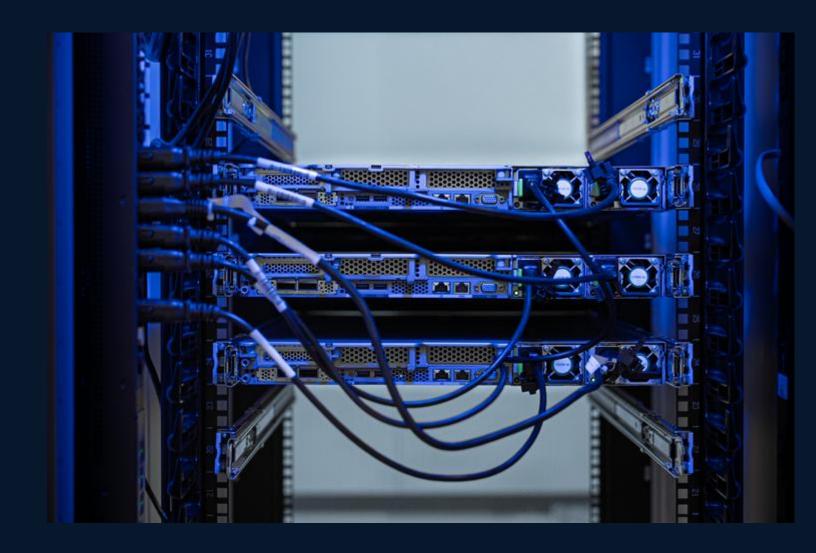
NIST Postquantum Algorithms


	•				
ML-KEM (FIPS 203)	ML-DSA (FIPS 204)	SLH-DSA (FIPS 205)	FN-DSA (FIPS 206) Draft	HQC (Draft)	LMS/XMSS (NIST SP 208
 Based on CRYSTALS-Kyber Lattice-based Secures the exchange of keys over untrusted medium 	 Based on CRYSTALS-Dilithium Lattice-based Digital signature scheme for authenticity and integrity of data 	 Based on SPHINCS+ Stateless hash-based Digital signature scheme for authenticity and integrity of data 	 Based on FALCON Lattice-based Very compact digital signature scheme for authenticity and integrity of data 	 Serves as a backup for ML-KEM to diversify outside lattices Code-based (decoding random linear codes problem) 	Stateful hash-based signatures
ML-KEM Use Cases	ML-DSA Use Cases	SLH-DSA Use Cases	FN-DSA Use Cases	HQC Use cases	LMS/XMSS Use Cases
 Securing web connections VPN session key establishment 	 Signing software and updates Communcation Authentication Authenticating digital docs 	 Long-term code and firmware signing Validating certificates Authenticating archival documents 	 TLS handshakes Securing loT/Embedded Devices Authenticate sessions for high performance systems (Ex., VPNS, Load Balancers) 	 General Key Exchange (TLS, VPN, Messaging) Backup crypto-system 	 Firmware / software signing Bootloader / OS image signing Code updates Hardware root of trus

PQC Performance vs RSA/ECC


- Larger keys and signatures than RSA/ECC
 - Higher storage and transport costs
- Different computational profile
 - Impact on HSM throughput and latency
- Operational implications
 - Ecosystem/library maturity still evolving

Comparison of Public Key Sizes In Bytes


Comparison of Signature Sizes In Bytes

LMS Stateful PKI Backend Challenges

- No OTS reuse in LMS
 - Strict state tracking
- Concurrency control
 - Prevent state conflicts
- Durable state for offline signing
 - Support long workflows
- Disaster recovery
 - Restore without state duplication
- Audit processes
 - Track exhaustion, rollover, root hash integrity
- NIST SP 800-208

Path to post-quantum cryptography

NIST PQC Algorithms

LMS – RFC8554 – approved

XMSS – RFC8391 – approved

NIST SP.800-208 – approved (implementation requirements for LMS & XMSS)

CRYSTALS Kyber: FIPS 203 - ML-KEM - approved

Module-Lattice-Based Key-Encapsulation Mechanism Standard

CRYSTALS Dilithium: FIPS 204 - ML-DSA - approved

Module-Lattice-Based Digital Signature Standard

SPHINCS+: FIPS 205 - SLH-DSA - approved

Stateless Hash-Based Digital Signature Standard

Final standards for FIPS 206 TBD

Falcon DSA (FIPS 206) – stated expectation date passed HQC – draft pending – expected 2027

© 2025 Cisco and/or its affiliates. All rights reserved.

Protocol standards (the most urgent set)

IKEv2:

RFC 9370 - Multiple Key Exchanges in the Internet Key Exchange Protocol Version 2 (IKEv2) - approved

RFC 9242 - Intermediate Exchange in the Internet Key Exchange Protocol Version 2 (IKEv2) - approved

<u>Post-quantum Hybrid Key Exchange with ML-KEM in the Internet</u> Key Exchange Protocol Version 2 (IKEv2) – draft

TLS:

Hybrid key exchange in TLS 1.3 - draft

SSH:

Post-quantum Hybrid Key Exchange in SSH - draft

PKI:

Composite Signatures For Use In Internet PKI - draft Internet X.509 Public Key Infrastructure: Algorithm Identifiers for ML-DSA - draft

<u>Internet X.509 Public Key Infrastructure - Algorithm Identifiers for Kyber - draft</u>

PQC Strategy: Key Takeaways & Actions

Planning

- Decade long transition need to survive throughout all hurdles
- Dependency list can be longer than expected
- Think of the lifetime of your products/services to evaluate the risk

PQC algorithm

- No silver bullet found, yet ...
- New algos might have an impact on your design and operations

Standards

- You can start already
- TLS and IKE are on the way

Thank you

ıı|ıı|ıı CISCO

ıllıılıı CISCO