Post-Quantum

Cryptography Conference

NQSN Singapore: Quantum-Safe Network Testbed with Versatile Reference Applications

Jing Yan HawSenior Research Fellow at Centre for Quantum Technologies, National <u>University of Singapore</u>

Hao QinSenior Research Fellow at Centre for Quantum Technologies, National University of Singapore

KEÝFACTOR

CRYPTO4A

October 28 - 30, 2025 - Kuala Lumpur, Malaysia

NQSN Singapore: Quantum-Safe Network Testbed with Versatile Reference Applications

<u>Dr. Jing Yan (Joshua) HAW, *Dr. Hao QIN</u> *
Centre for Quantum Technologies, National University of Singapore *contributed equally iy.haw@nus.edu.sg; hao.qin@nus.edu.sg

Post-Quantum Cryptography Conference 2025 30 Oct 2025

QUANTUM-SAFE COMMUNICATIONS

Software

Hardware

Post-quantum cryptography

Development and implementation of quantum-safe algorithms that are secure against quantum computer-supported attacks.

Quantum key distribution

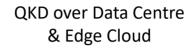
Deployment of cryptographic protocols for distribution of symmetric keys, in order to avoid vulnerable key exchange mechanisms.

Random number generation

Generating true random numbers based on the laws of quantum mechanics, as opposed to the pseudo-random numbers generated by traditional techniques.

Transitioning to a Quantum-Secure Economy, World Economic Forum, Sept 2022 https://www.weforum.org/whitepapers/transitioning-to-a-quantum-secure-economy/

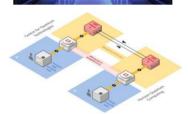
QUANTUM-SAFE COMMUNICATIONS INITIATIVES IN SINGAPORE



Free space QKD across 1.5 km with entangled photon pairs

Quantum nanosatellite SpooQy-1 deployed from ISS

Entanglement over Fiber Network & Nano-sat.


Led ITU-T work item on QKD protocol framework

Published Singapore's 1st standard on QKD Networks

2017

2019

2020

2022

2023

2025

Centre for Ouantum Technologies

NATIONAL QUANTUM-SAFE NETWORK

NQSN Testbed Phase II

Digital blueprint: vision of a quantum-safe nation in 10 years & **NQSN+**, Southeast Asia's first quantum-safe network infra.

QUANTUM KEY DISTRIBUTION

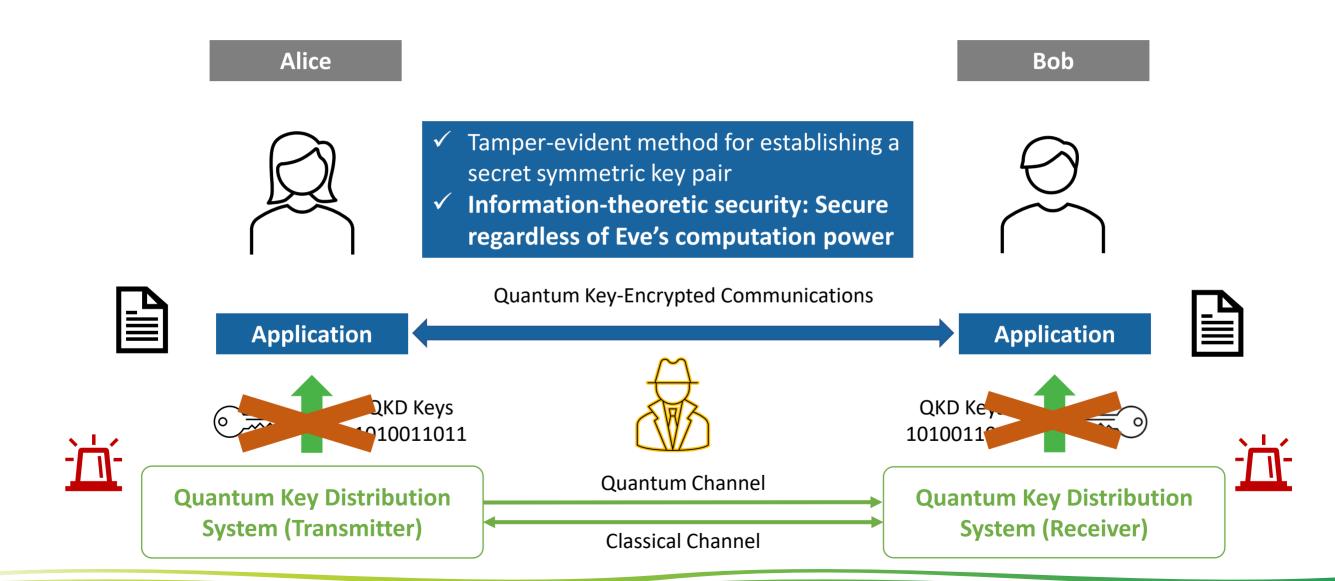


Table 4. Comparison between PQC and QKD

	PQC	QKD
Implementation	Software and hardware	Hardware
Protocol security	Computational complexity	ITS
Implementation loopholes	Exist	Exist
Application and usage	Public-key encryption and key establishment, Digital signature	Key establishment
Migration	Software and hardware upgrade	Infrastructure and hardware upgrade
Standardisation and certification	Required	Required

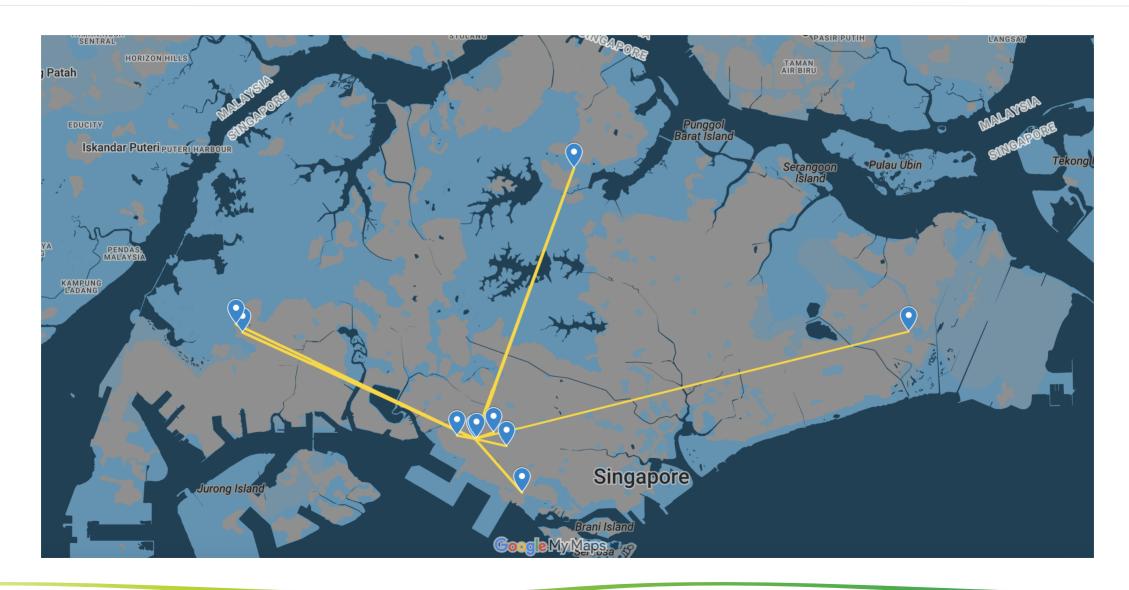
PQC: Post quantum cryptography; QKD: quantum key distribution; ITS: information-theoretic security.

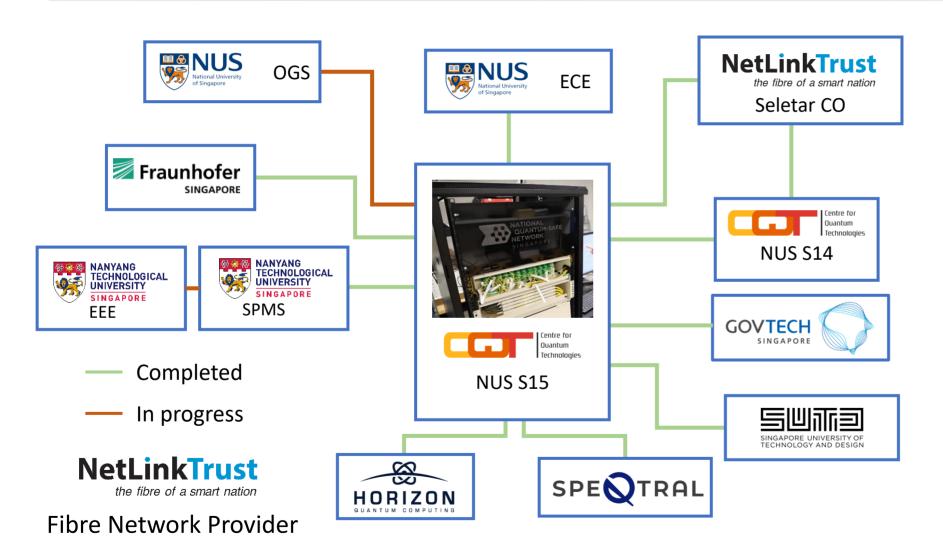
Qiu, K., Haw, J. Y., Qin, H., Ng, N. H., Kasper, M., & Ling, A. (2024). Quantum-Secured Data Centre Interconnect in a field environment. Journal of Surveillance, Security and Safety, 5(3), 184-197.

TESTBED INFRASTRUCTURE & USE CASES

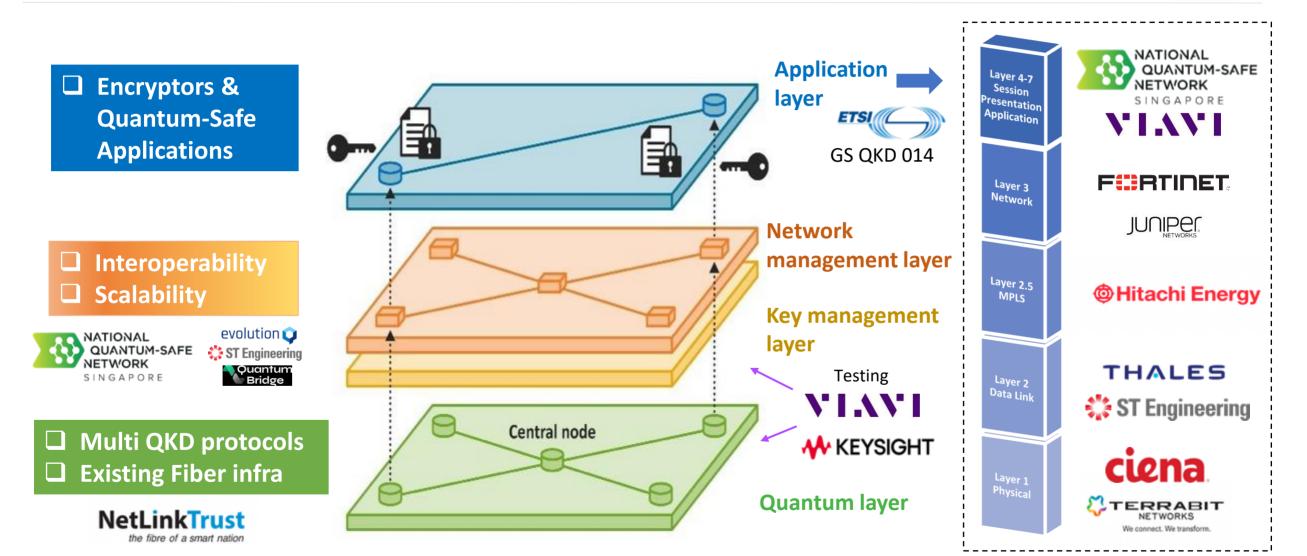
- Nation-wide terrestrial network (+ optical ground station)
- Public-private collaborations & use cases with >30 companies & govt agencies
- Vendor neutral and multiprotocol
- Hybrid Quantum-Safe Technologies, e.g.
 QKD and PQC (Post-quantum cryptography)
- Interoperability of quantum-safe technologies and applications

SECURITY FRAMEWORK & GUIDELINES


- In-depth functional & security evaluation of Quantum-safe technologies to seed certification
- Build readiness by developing national and international standards


NATIONAL QUANTUM-SAFE NETWORK SINGAPORE

TESTBED – NATION-WIDE FIBRE NETWORK



- 12-node **Star-Mesh**Network
- Total dark fibres:
 - > 75 fibres
- Total fibres length:
 - > 1500 km
- Distance range:
 0.45 km 47 km

TESTBED – DIFFERENT LAYERS IN NQSN

Compliance with ITU-T Y.3800; IMDA TSAC RS QKDN

Open Systems Interconnection (OSI) Layers

Network

Encryptor

QKDN Manage.

IDQ COW

IDQ BB84

Toshiba BB84

KMS & QKDN Manage.

Software App

Quantum Randomness Beacon (S15 QRNG)

Fiber panel

QKD & Fiber Testing Viavi etc.

IDQ BB84 Bob

The state of the s

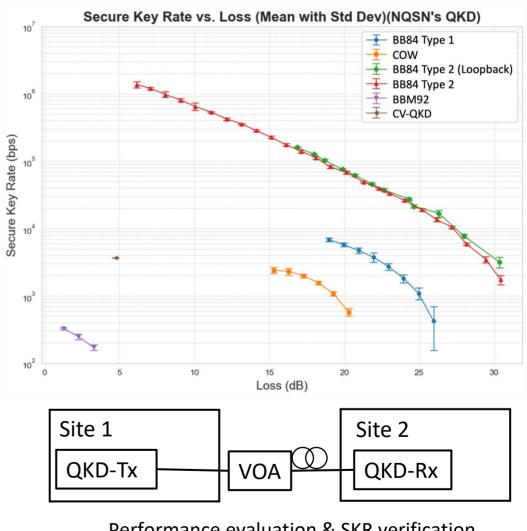
中等更

/5:**5X**[:

Optical switch

Quintessencelabs GMCS CV QKD

S15 BBM95 Source, Receiver A, and Receiver B


QUANTUM LAYER – QKD SYSTEMS EVALUATED

- Multi-QKD protocol, vendor-neutral QKD network testbed
- **Evaluation of different QKD protocols: BB84, COW, GMCS, BBM92**
- SKR between 0.2kbps 0.1 Mbps

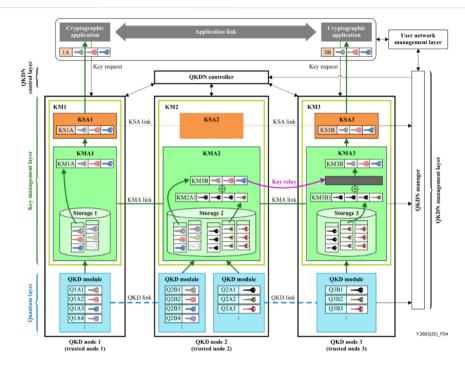
Performance evaluation & SKR verification

KEY MANAGEMENT LAYER

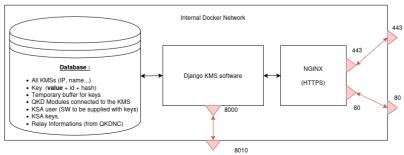
NATIONAL QUANTUM-SAFE NETWORK

- Interoperable Key Management System (KMS)
- Key interface development & evaluation

Key Management System (KMS)


- Interoperable with different QKD systems and apps
- Multi-input &-output key interface with scalability
- KMS link secure by TLS 1.3 with X25519MLKEM768 for key exchange (PQC) and X.509 PKI certificate for authentication

Key Management Agent (KMA)


- Key buffer for integrity check
- KMA key storage: Key data base
- Proactive key relay with OTP and AES
- Hybrid key capability under development

Key Supply Agent (KSA)

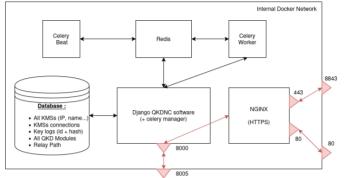
- Key supply to cryptographic application
- KSA key storge: Key data base
- Key Interface: ETSI GS QKD 014
- * Follow ITU-T Y.3803, X.1712; ETSI GS QKD 014; IMDA TSAC RS QKDN

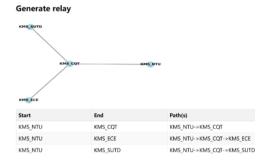
ITU-T Y.3803 Quantum key distribution networks – Key management (NQSN KMS: Modified version of Case 2)

NQSN KMS V1 software architecture

QKD NETWORK MANAGEMENT LAYER

NATIONAL QUANTUM-SAFE NETWORK SINGAPORE

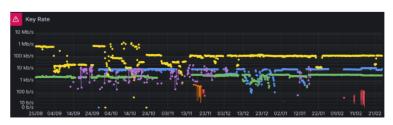

- QKDN Controller & QKDN Manager
- A **centralized** QKD network management system consists of QKDN controller and manager


Controller Function

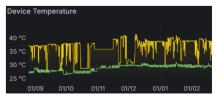
- Network configure control
- Routing control for key relay
- Configuration control
- KMS policy and other policy control
- Access control & session control
- Periodic task control

Management Function

- QKDN parameters monitoring: QKD, KMS, interfaces...
- Entity authentication
- Quality of Service (QoS)
- Fault detection & reporting



NQSN QKDN control & management system software V1 architecture


QKD link status

QKD-Key rate log

KMS storage

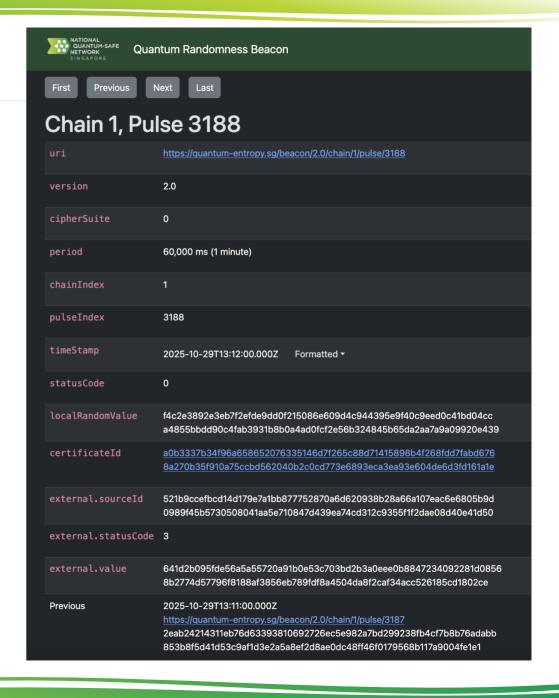
QKD device temp.

AD-HOC QUANTUM APPLICATION

- Quantum Randomness Beacon Service
- Developed in "SpooQy Lab" in CQT and operation under NQSN Testbed

Randomness Source

- Based on Quantum Random Number Generator (QRNG) from S-Fifteen Instruments
- Vacuum fluctuation with homodyne detection


Randomness Beacon Service

- Randomness service as in NIST IR 8213
- Random string bits on a fixed interval
- Real-time randomness without a formatting framework

https://quantum-entropy.sg/

ITU-T Recommendation	Title	ISO/IEC reference
X.508 (04/2025)	Information technology - Open Systems Interconnection - The Directory: Public-key infrastructure: Establishment and maintenance	ISO/IEC 9594-12
X.509 Amendment 1 Corr.2 (11/2023)	Information technology - Open Systems Interconnection - The Directory: Public-key and attribute certificate frameworks	ISO/IEC 9594-8
X.510 Amendment 1 (08/2025)	Information technology - Open Systems Interconnection - The Directory: Protocol specifications for secure operations	ISO/IEC 9594-11

Plans for X.508, X.509, X.510

- ➤ Usage of Authority and Validation lists for IoT devices which have limited capacity.
- ➤ Usage of quantum safe algorithms. A migration mechanism using specific extensions has already been added to the last Edition of X.509 Recommendation.
- ➤ Split ITU-T X.509 to separate Public Key Infrastructure and Privilege Management infrastructure used for access control.

ITU-T X.509 ISO/IEC 9594-8 Public key certificates Certificate revocation lists Authorization and validation lists (for constraint environments) Attribute certificates

(for access-control)

ISO/IEC 9594-11
Wrapper protocol
Establishment of share keys
Use of alternative algorithms
Management of AVLs
CA subscription protocol
Trust broker protocol

ITU-T X.510

ITU-T X.508 ISO/IEC 9594-12 Establishment and maintenance Cryptographic algorithms Trust establishment PKI in machine-to-machine environment Mathematics for cryptographic algorithms

- X.508, X.509 and X.510 belong to the X.500 series (directory) and the ASN.1 modules imports definitions from other parts of X.500 series recommendations often related to directory service.
- Plan to reorganize ASN.1 definitions to have three categories of module: Modules common to Directory Service and Cybersecurity (example: UsefulDefinitions), Modules dedicated to Directory Service, Modules dedicated to Cybersecurity

Jean-Paul Lemaire, Plans for X.508, X.509, X.510 Recommendations 3rd ITU-T X.509 Day, 9 May 2024

Fourth ITU-T

X.509 Day

5 September 2025 13:00-16:00 CEST

TU	WP1/17 Digital identity, Quantum based security, PKI and Fundamental security technologies		
	Q10/17	Identity management and telebiometrics architecture and mechanisms Continuation of Q10/17, update by ITU-T SG17 (Geneva, 8-17 April 2025) and endorsed by TSAG (Geneva, 26-30 May 2025)	
IEC IEC	Q11/17	Generic technologies to support secure applications Continuation of Q11/17	PKI standard, X.509, X.500 serie
	Q15/17	Quantum-based security Continuation of Q15/17	QKD related WIs, NQSN involve

- ☐ PKI standards are now under revision
- Under development in ITU-T SG 17 WP1 Q11/17 and ISO/IEC JTC1 SC6
- PQC considerations will be gradually updated in the X.508, X.509, X.510
- ITU celebrates ITU-T X.509 Day every year on 9 May or 5 Sept
- ☐ X.508 (Published 04/2025)
- Some considerations on migration to PQC
- ✓ Quantum computers and cryptographic algorithm migration
- ✓ Possible attacks by use of quantum computers
- ☐ X.510 Amd.1 (Published 08/2025)
- ✓ The wrapper protocol includes a migration path for cryptographic algorithms allowing for smooth migration to stronger cryptographic algorithms as such requirements evolve. This will allow migration to PQC algorithms.
- ✓ Annex H Migration of cryptographic algorithms: quantum computer threat; migration tools/approaches

MyWorksp...

X.509Amd.2 - The Directory: Public-key and attribute certificate frameworks

Study Period:

2025-2028

Study Group:

SG17

Question:

Q11/17

Status:

Under study [Issued from previous study period]

Approval process:

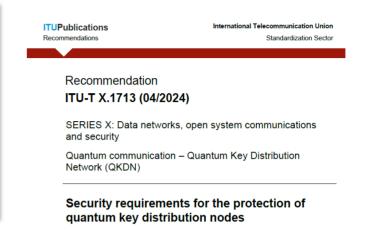
AAP

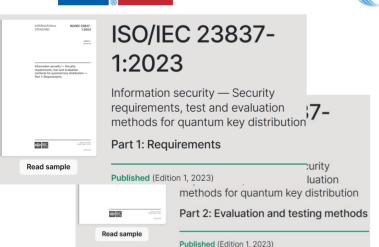
Type of work item:

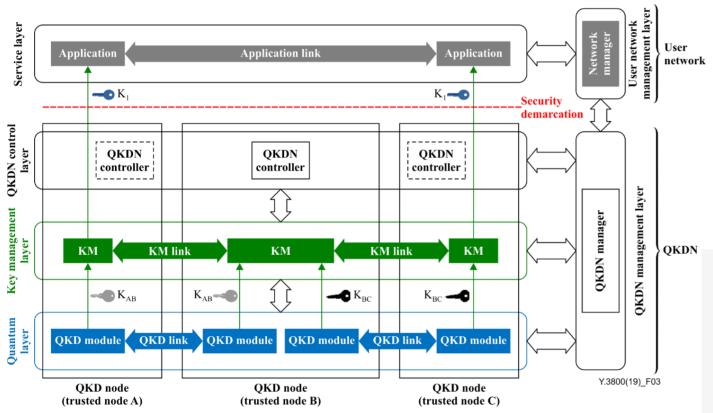
Recommendation

☐ X.509amd.1 Corr. 2 (Published 10/23)

- A migration mechanism using specific extensions has already been added to the last edition of X.509.
- Usage of PQC algorithms will be updated in following editions and maybe in the X.509amd.2

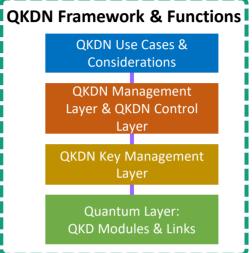

STANDARDIZATION – INTERNATIONAL



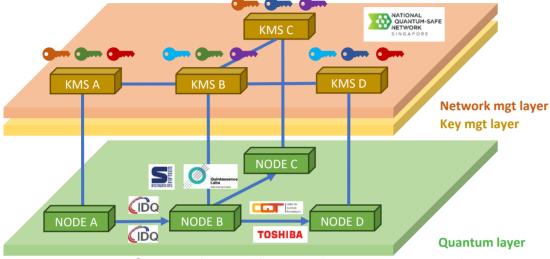


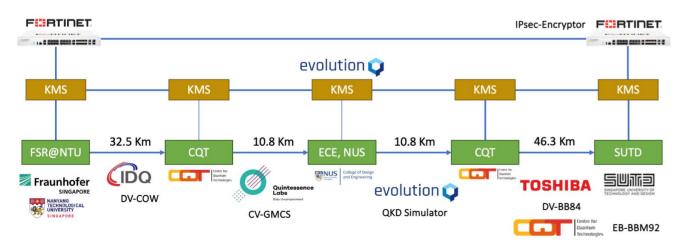
International standards

- Led and established the work item for 1st standard on QKD protocol framework in ITU-T (With IMDA)
- Editor ITU-T X.1713; FGQIT4N D2.3.1 & 2.3.2
- ITU-T JCA QKDN Vice Chair; Q15/17 Asso. Rapporteur
- Liaison officer & Contributor ISO/IEC 23837
- Contributor ETSI GR QKD 017, Revision GS QKD 005
- Participation & Monitor in ITU-T SG17, SG 13, SG11, JCA-QKDN; ETSI ISG QKD; ISO/IEC JTC1 SC 27 WG3


STANDARDIZATION -LOCAL

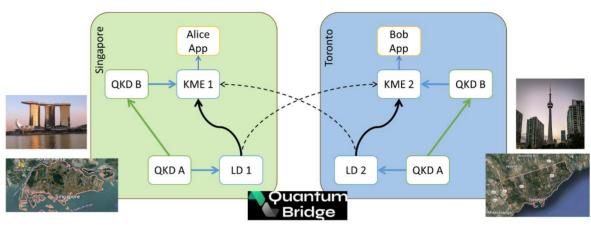
- Figure 2 in Rec. ITU-T Y.3800 Corr.1 (2020);
- Figure 2 in IMDA RS QKDN 2023(referenced);
- * Conceptual structure of a QKDN and a user network



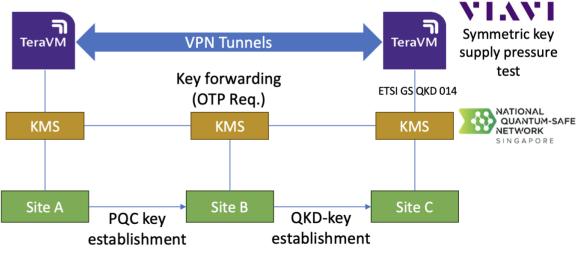

Local standards

- IMDA TSAC Quantum Communications Network Task Force, with chairs & editors from NQSN, consolidated the contributions from 20 partners
- Singapore's 1st standard (Reference Specification) on QKD Networks published on June 2023, with high level descriptions of QKDN & aligned with SDOs on QKDN, e.g. ITU-T, ETSI
- 2nd phase study on QKD modules & networks evaluation & certification
- 4. 3rd phase study to update RS QKDN, e.g. **PQC**, interworking

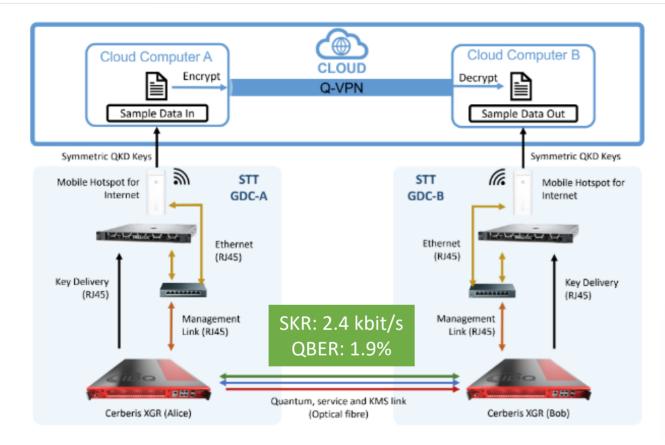
KEY MANAGEMENT LAYER USE CASES

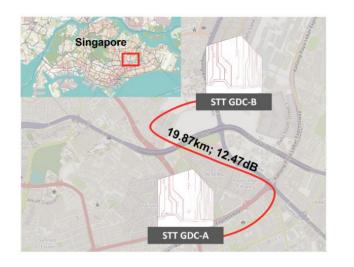


NQSN KMS for Multi-node, Multi-QKD Key Relay



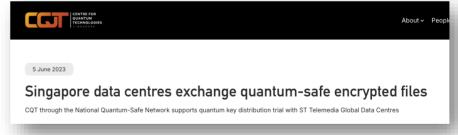
Multi-hop, Multi-QKD Over 5 Nodes


Cross-border Distributed Symmetric Key Exchange (with QKD)


QKDN KMS Robust Test with TeraVM

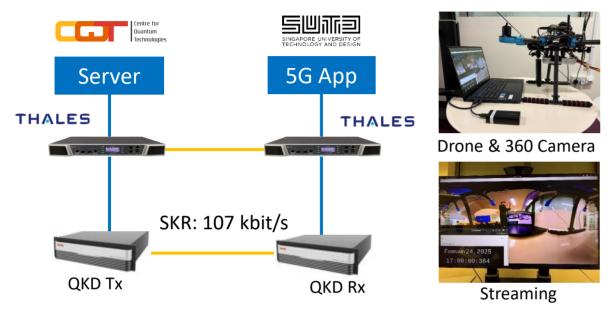
QKD-SECURED DATA CENTRE INTERCONNECT

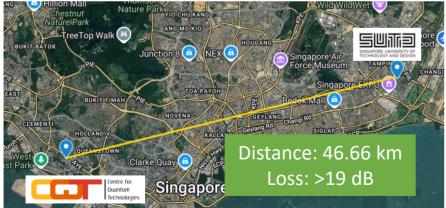
- QKD system (IDQ) operated stably & continuously over commercial-grade fibre (Netlink Trust)
- Demonstration of secure data transfer over VPN with QKD keys

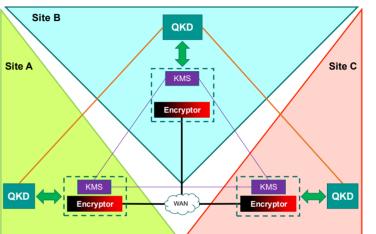


Quantum-Secured Data Centre Interconnect in a field environment

Views: 934 | Downloads: 691 | Cited: Crossref 0


Kaiwei Qiu¹, Jing Yan Haw² Melly H. Y. Ng¹, Michael Kasper³, Alexander Ling^{2,4}

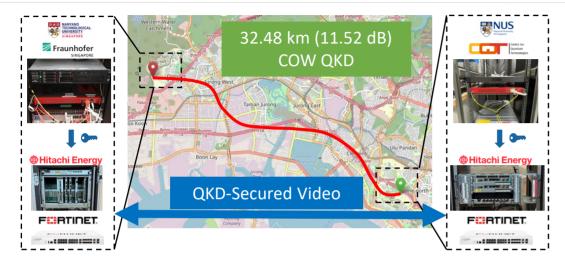

J Surveill Secur Saf 2024;5:184-97.

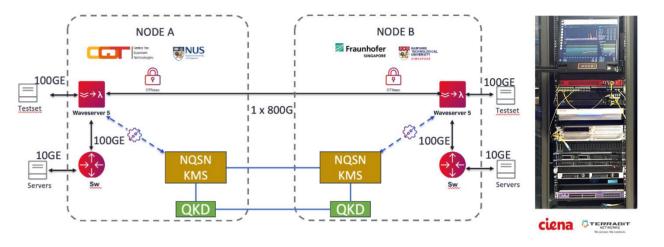

QUANTUM-SAFE 5G & GOVERNMENTAL INFRASTRUCTURE

QKD/PQC-encrypted 5G Infrastructure

3-node Encryptor

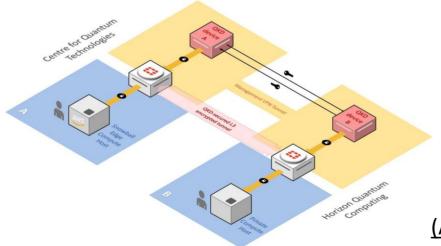
3-node KMS


2 types of QKD



3-node GovTech-ST Engineering QKD-Encryption

OTHER QUANTUM-SAFE REFERENCE USE CASES



Hitachi Energy MPLS QKD Integration (L2.5)/Fortinet VPN (L3)

OTN Layer Quantum Encryption (Ciena L1 Encryptor)*

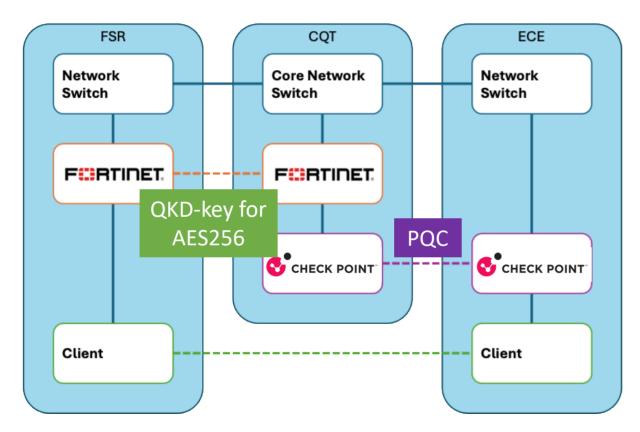
*In Progress

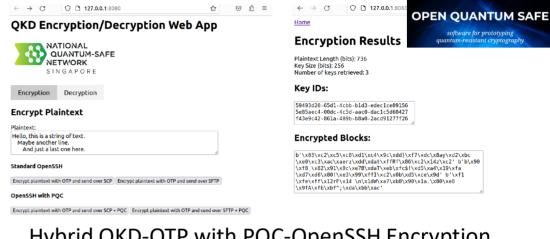
Quantum-secured VPN link
(AWS Edge Compute & Fortinet hardware)

Implementing a quantum-secured network in a metropolitan area by Juan Moreno and Cyrus Proctor | on 06 MAR 2023 | in Quantum Technologies | Permalink | → Share

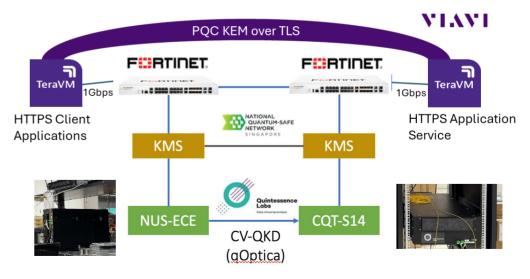
Featured on

AWS Quantum

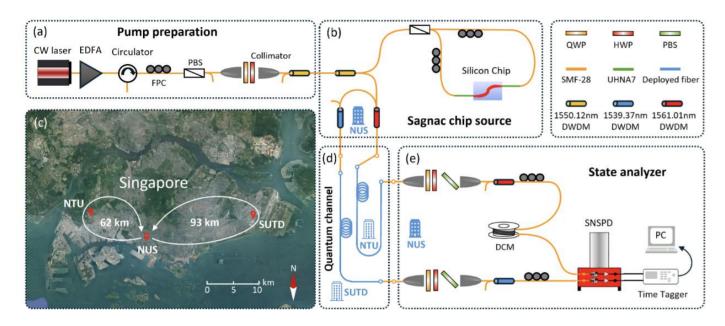

Technologies Blog

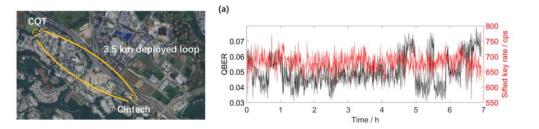

https://aws.amazon.com/blogs/quantum-computing/implementing-a-quantum-secured-network-in-a-metropolitan-area/

HYBRID QKD-PQC SECURED USE CASES

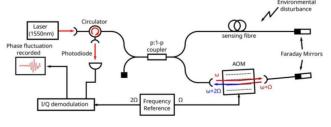


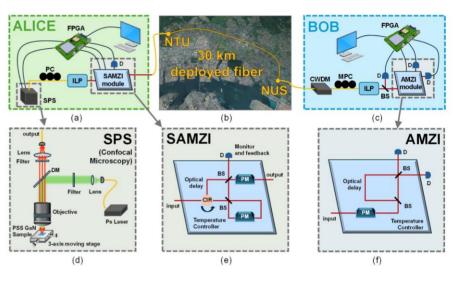
Hybrid QKD-PQC VPN (Fortinet, Check Point) between 3 nodes

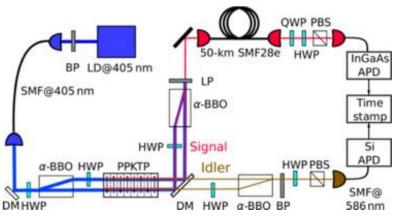

Hybrid QKD-OTP with PQC-OpenSSH Encryption


QKD-PQC Defence in Depth (QuintessenceLabs, Fortinet, Viavi)

QUANTUM NETWORK RESEARCH ON NQSN TESTBED




Entanglement Distribution with Silicon Photonic Chip over 155 km


Polarization QKD With Single-photon Emitter

Interferometic Fibre-Sensing

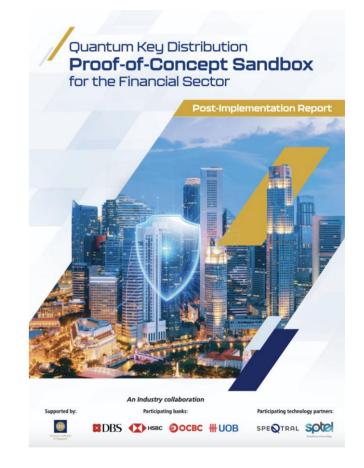
QKD with Single-photon Source

Polarization Entangled Photon Pairs

RECENT QUANTUM-SAFE INITIATIVE IN SINGAPORE

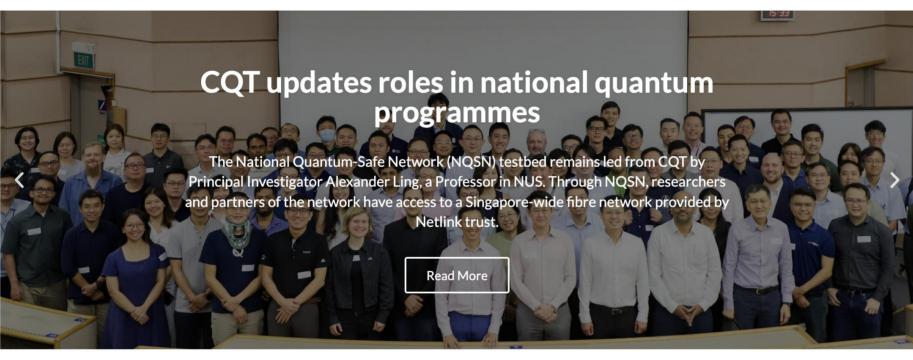
Acceleration Singapore's Quantum-Safe Transition

As global quantum adoption advances, Singapore has prioritized enabling quantum-safe solutions to stay ahead.


• National Quantum-Safe Network Plus (NQSN+) was launched to enable businesses to adopt quantum-safe technologies (agnostic to both QKD and PQC) in real-world applications. Builds up and mature capabilities in technical, operations and business in this area.

Key Developments:

MAS Quantum-Safe Communications Sandbox


https://www.mas.gov.sg/news/media-releases/2025/mas-and-industry-partners-publish-technical-report-on-proof-of-concept-sandbox

National Quantum-Safe Network Plus

https://www.imda.gov.sg/about-imda/emerging-technologies-and-research/national-quantum-safe-network-plus

JOIN US

NQSN Testbed (2025-2029)

nqsn.sg

Supported by

(Fibre Network)

Email: nqsn_contact@groups.nus.edu.sg