

Transitioning to Post-Quantum Cryptography in IAM

Udara Pathum

Senior Software Engineer - WSO2

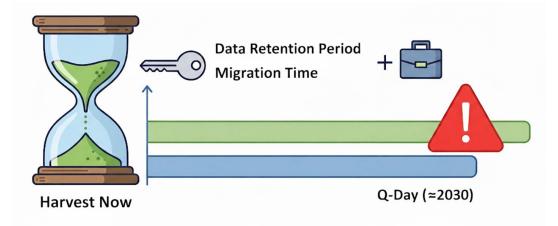
udarap@wso2.com

What Encrypts Today
Can Be
Stolen and Broken by
Tomorrow's Quantum
Computers

Understanding Identity and Access Management

- Framework that manages digital identities and access control
- Core functions:
 - O **Authentication**: Verifying user identity
 - O **Authorization**: Granting appropriate permissions
 - User Management: Account lifecycle management
 - O **Governance**: Monitoring and compliance

Every enterprise interaction flows through IAM - making it a critical target for quantum attacks.


IAM Cryptography Dependencies

IAM Component	Role	Current Algorithms	PQ Impact
TLS Connections	Secure communication	RSA/ECDHE	Vulnerable
PKI	Certificates, signatures	RSA/ECDSA	Vulnerable
SSO Signing (SAML/OIDC)	Assertion & token signing	RSA/ECDSA	Vulnerable
SSO Encryption (JWE)	Token encryption	RSA/ECDSA+AES	Vulnerable
IDP Secrets	Credential encryption	AES	Safe (For now)
Password hashing	Secrets (OAuth2, passwords)	PBKDF2/SHA-2/ SHA-3/bcrypt	Safe (For now)

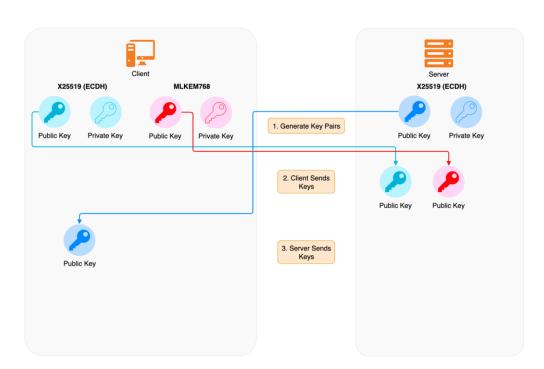
Post-Quantum Risk Assessment in IAM

- Harvest Now, Decrypt Later: Encrypted traffic and IAM data can be captured today and decrypted in the future.
 - → High-risk: Captured TLS traffic → PII, credentials, session tokens, and authorization info.
 - O **Medium-risk:** Stored SAML assertions, JWTs, and ID tokens.
 - O **Low-risk:** Password hashes, short-lived secrets harder to exploit with PQ attacks.

Securing IAM via Hybrid Algorithms

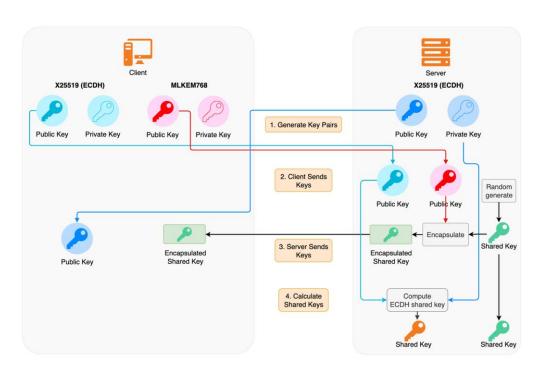
Why Hybrid Algorithms?

- Need to prevent Harvest Now, Decrypt Later (HNDL) Attacks
- Replacing classical algorithms with PQ algorithms is not yet recommendable
 - O PQ algorithms could have hidden vulnerabilities (e.g. KyberSlash)
 - O Difficulty to migrate from existing crypto infrastructure (e.g PKI, TLS configs)
 - O Need to preserve compatibility with existing clients

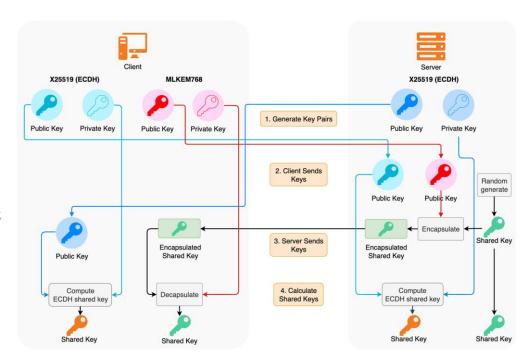

Why Hybrid Algorithms?

- Need to prevent Harvest Now, Decrypt Later (HNDL) Attacks
- Replacing classical algorithms with PQ algorithms is not yet recommendable
 - O PQ algorithms could have hidden vulnerabilities (e.g. KyberSlash)
 - O Difficulty to migrate from existing crypto infrastructure (e.g PKI, TLS configs)
 - O Need to preserve compatibility with existing clients
- Hybrid algorithms: Classical + post-quantum primitives.
- Currently used in:
 - O TLS communication
 - Digital signatures
 - Hybrid encryption

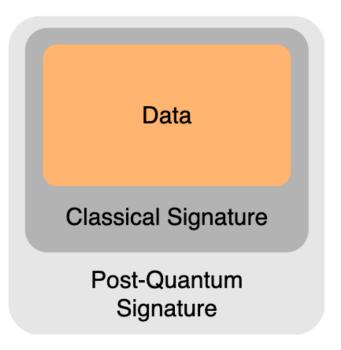
Post-Quantum TLS


 Combine classical key exchange (RSA/ECDHE) with PQ key exchange (ML-KEM)

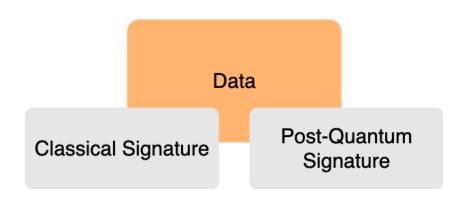
Post-Quantum TLS


 Combine classical key exchange (RSA/ECDHE) with PQ key exchange (ML-KEM)

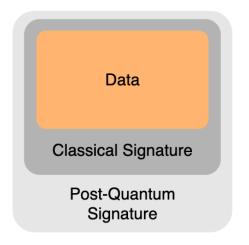
Post-Quantum TLS


- Combine classical key exchange (RSA/ECDHE) with PQ key exchange (ML-KEM)
- Maintains compatibility with legacy clients
- Protects IAM communications end-to-end

Hybrid Digital Signatures


- Combine classical digital signatures (RSA/ECDSA) with PQ digital signatures (ML-DSA)
- Two hybrid approaches:
 - Nested Hybrid Signature

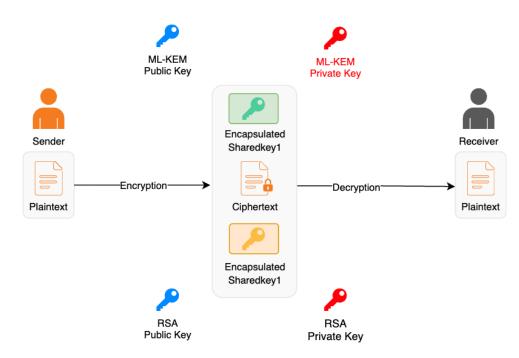
Hybrid Digital Signatures


- Combine classical digital signatures (RSA/ECDSA) with PQ digital signatures (ML-DSA)
- Two hybrid approaches:
 - O Nested Hybrid Signature
 - O Parallel Hybrid Signature

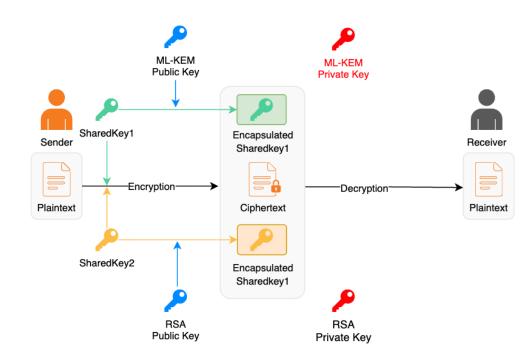


Hybrid Digital Signatures

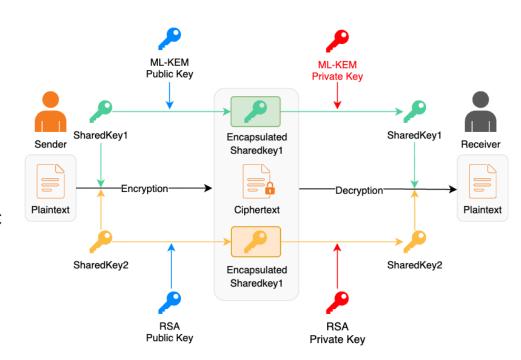
- Combine classical digital signatures (RSA/ECDSA) with PQ digital signatures (ML-DSA)
- Two hybrid approaches:
 - O Nested Hybrid Signature
 - Parallel Hybrid Signature
- Can be used for
 - O OIDC / SAML assertion signing
 - O OIDC / SAML request signing
 - Acces token / ID token signing



Post-Quantum Hybrid Public-Key Encryption (HPKE)


- Based on HPKE framework
- Composite KEM
 - Classical KEM (DH/ECDH) + PQ
 KEM (ML-KEM) combined in parallel

Post-Quantum Hybrid Public-Key Encryption (HPKE)


- Based on HPKE framework
- Composite KEM
 - Classical KEM (DH/ECDH) + PQ
 KEM (ML-KEM) combined in parallel

Post-Quantum Hybrid Public-Key Encryption (HPKE)

- Based on HPKE framework
- Composite KEM
 - Classical KEM (DH/ECDH) + PQ
 KEM (ML-KEM) combined in parallel
- Can be used for
 - Encrypted JWE ID tokens in OIDC / SAML flows

Towards Quantum-Safe IAM

Why Migration to PQC is Hard

- Lack of Standards for IAM Protocols
 - O OIDC, SAML, JWS, JWE PQ specifications are still in progress
- Web Browser Compatibility
 - O PQ certificate signing and PQ TLS may not be fully supported
- Client & Application Compatibility
 - O OIDC/SAML clients may not yet handle PQ algorithms
- Cloud Provider Support
 - O Many cloud providers have adopted PQ algorithms; full support is pending
- Limited PQ Libraries
 - O PQ implementations are missing for some programming languages and frameworks

Ensuring Crypto Agility in IAM

- Crypto Agility: The ability to easily switch cryptographic algorithms in production systems with minimal effort
- More algorithms will be vulnerable tomorrow. Better play it safe
- Best Practices
 - O Use abstraction layers for crypto libraries
 - O Avoid hardcoding algorithms or key sizes
 - O Plan for data migration (e.g. encryption key rotation)
 - O Plan for certificate updates
 - O Plan password migration to avoid forced reset

Reinforcing IAM with Zero Trust

- Zero Trust Principle: Never trust, always verify
 - Continuously Monitor and Validate
 - O Enforce Least Privileged Access
 - O Assume Breach
- Why it matters for PQC
 - O Limits damage even if quantum-compromised credentials are used
 - Helps enforce cryptographic compliance at every boundary

Thanks!

wso2.com X **f** in

Post-Quantum

Cryptography Conference

Transitioning to Post-Quantum Cryptography in IAM

Udara PathumSenior Software Engineer at WSO2

KEŸFACTOR

CRYPTO4A

October 28 - 30, 2025 - Kuala Lumpur, Malaysia

