
Post-Quantum

Cryptography Conference

Making PQ Signatures work in the WebPKI
Post-quantum signatures are not easily deployable in the WebPKI. Using the signature algorithms recently
standardized by NIST as drop-in replacements for existing classical algorithms on the Web would incur significant
performance degradations, making this approach infeasible unless a cryptographically-relevant quantum computer
(CRQCs) is imminent. There’s a real risk that post-quantum signatures do not see widespread adoption before
CRQCs become a reality, unless we make changes to how signatures are used in the WebPKI. This talk dives into
several of the more promising proposals for making post-quantum signatures deployable, from TLS extensions to
reduce the number of transmitted signatures, to using key agreement as an authentication mechanism, to complete
overhauls of the WebPKI. We discuss ongoing work to evaluate the feasibility of each of these proposals and to
address known unknowns. _(this is a 60 minute session)_

Luke Valenta
Research Engineer at Cloudflare

January 15 and 16, 2025 - Austin, TX (US) | Online

PKI Consortium Inc. is registered as a 501(c)(6) non-profit entity (“business league”) under Utah law (10462204-0140) | pkic.org

https://www.ssl.com/
https://pqshield.com/
https://www.hidglobal.com/
https://www.keyfactor.com/
https://www.entrust.com/

Technical breakout: Making PQ
signatures work in the WebPKI

Luke Valenta, Cloudflare Research
lvalenta@cloudflare.com
PKI Consortium Post-Quantum Cryptography Conference, January 15, 2025

This technical break-out
Start with a brief recap of the many signatures in the WebPKI.
Then we take a look at NIST’s standardized post-quantum
signature schemes and those being considered in the on-
ramp.
And we give updates1 on three promising strategies for
making PQ signatures work in the WebPKI
● Leaving out intermediates
● KEMTLS: using key agreement as authentication
● Merkle Tree Certificates

1. Bas Westerbaan, Coping with post-quantum certificates in the WebPKI, PKIC PQ Conference, AMS, Nov. 2023

https://pkic.org/events/2023/pqc-conference-amsterdam-nl/pkic-pqcc_bas-westerbaan_cloudflare_coping-with-post-quantum-signatures-in-the-webpki.pdf

There are many
signatures on the Web

Typically 5 signatures
and 2 public keys
when visiting a website.

Signature #5

Tailoring for TLS Priorities

Signature #1
(root on intermediate)

Short signature (big public key OK)

Fast verification (slow signing OK)

Public key #1
(intermediate)

Balanced signature/public key

Fast verification

Signature #2
(intermediate on leaf)

Public key #2
(leaf)

Balanced signature/public key

Balanced signing/verification

Signature #5
(leaf on transcript)

Signature #3
(signed certificate timestamp)

Short signature

Fast verification

Signature #4
(signed certificate timestamp)

Short signature

Fast verification

Signature #5

Signature schemes of all shapes and sizes Sizes (bytes) CPU time (lower is better)

PQ Public key Signature Signing Verification

Standardised Ed25519 32 64 0.15 1.3

RSA2048 256 256 80 0.4

NIST standards ML-DSA44 1,312 2,420 1 (baseline) 1 (baseline)

Falcon512 (soon FN-DSA) 897 666 3 0.7

SLH-DSA128s 32 7,856 14,000 40

SLH-DSA128f 32 17,088 720 110

LMSM4_H20_W8 48 1,112 2.9 8.4

Sample from

round 2

signatures on-

ramp

MAYOone 1,168 321 1.4 1.4

MAYOtwo 5,488 180 1.7 0.8

SQISignI 64 177 17,000 900

UOVIs-pkc 66,576 96 0.3 2.3

HAWK512 1,024 555 0.25 1.2

Classical Algorithm Size (bytes)

Signature #1
(root on intermediate)

RSA4096 512

Public key #1
(intermediate)

RSA2048 256

Signature #2
(intermediate on leaf)

RSA2048 256

Public key #2
(leaf)

P-256 32

Signature #5
(leaf on transcript)

P-256 64

Signature #3
(signed certificate timestamp)

P-256 64

Signature #4
(signed certificate timestamp)

P-256 64

Total 1,248

Signature #5

All SLH-DSA Algorithm Size (bytes)

Signature #1
(root on intermediate)

SLH-DSA128s 7,856

Public key #1
(intermediate)

SLH-DSA128s 32

Signature #2
(intermediate on leaf)

SLH-DSA128s 7,856

Public key #2
(leaf)

SLH-DSA128f 32

Signature #5
(leaf on transcript)

SLH-DSA128f 17,088

Signature #3
(signed certificate timestamp)

SLH-DSA128s 7,856

Signature #4
(signed certificate timestamp)

SLH-DSA128s 7,856

Total 48,576

Signature #5

Most conservative choice. Order of magnitude slower signing than RSA.
Use 128f for handshake for more reasonable signing performance.

All ML-DSA Algorithm Size (bytes)

Signature #1
(root on intermediate)

ML-DSA44 2,420

Public key #1
(intermediate)

ML-DSA44 1,312

Signature #2
(intermediate on leaf)

ML-DSA44 2,420

Public key #2
(leaf)

ML-DSA44 1,312

Signature #5
(leaf on transcript)

ML-DSA44 2,420

Signature #3
(signed certificate timestamp)

ML-DSA44 2,420

Signature #4
(signed certificate timestamp)

ML-DSA44 2,420

Total 14,724

Signature #5

General purpose. Good performance. Using ML-DSA65 instead adds 20kB.

Falcon+ML-DSA Algorithm Size (bytes)

Signature #1
(root on intermediate)

Falcon512 666

Public key #1
(intermediate)

Falcon512 897

Signature #2
(intermediate on leaf)

Falcon512 666

Public key #2
(leaf)

ML-DSA44 1,312

Signature #5
(leaf on transcript)

ML-DSA44 2,420

Signature #3
(signed certificate timestamp)

Falcon512 666

Signature #4
(signed certificate timestamp)

Falcon512 666

Total 7,293

Signature #5

Fast and secure Falcon512 signing is hard to implement.

Stateful hash-based Algorithm Size (bytes)

Signature #1
(root on intermediate)

XMSSh16_w256_n128 544

Public key #1
(intermediate)

XMSSMT
h16,16_w256_n128 32

Signature #2
(intermediate on leaf)

XMSSMT
h16,16_w256_n128 1,088

Public key #2
(leaf)

ML-DSA44 1,312

Signature #5
(leaf on transcript)

ML-DSA44 2,420

Signature #3
(signed certificate timestamp)

XMSSMT
h16,16_w256_n128 1,088

Signature #4
(signed certificate timestamp)

XMSSMT
h16,16_w256_n128 1,088

Total 7,572 Signature #5

n=128 and w=256 instances are not standardised.
We lose non-repudiation.
Large precomputations/storage required for efficient signing.
Challenging to keep state.

Estimates from https://westerbaan.name/~bas/hashcalc/

https://westerbaan.name/~bas/hashcalc/

Sizes (bytes) CPU time (lower is better)

PQ Public key Signature Signing Verification

Standardised Ed25519 32 64 0.15 1.3

RSA2048 256 256 80 0.4

NIST standards ML-DSA44 1,312 2,420 1 (baseline) 1 (baseline)

Falcon512 (soon FN-DSA) 897 666 3 0.7

SLH-DSA128s 32 7,856 14,000 40

SLH-DSA128f 32 17,088 720 110

LMSM4_H20_W8 48 1,112 2.9 8.4

Sample from

round 2

signatures on-

ramp

MAYOone 1,168 321 1.4 1.4

MAYOtwo 5,488 180 1.7 0.8

SQISignI 64 177 17,000 900

UOVIs-pkc 66,576 96 0.3 2.3

HAWK512 1,024 555 0.25 1.2

Ideally, we have something that outperforms
Falcon/ML-DSA and is easier to deploy.

We also want a backup with different cryptographic
assumptions than structured lattices.

Concrete instances with on-ramp candidates
Using MAYO one for leaf/intermediate, and two for the rest, adds
3.5kB. Signing time between ECC/RSA. Security uncertain.
Using UOV Is-pkc for root and SCTs, and HAWK512 for the rest, adds
3.2kB. 66kB for stored UOV public keys. HAWK relies on Falcon
assumptions and then some more.
Using UOV ls-pkc again, but combined with ML-DSA44. Adds 7.4kB.
Relatively conservative choice.
SQIsign only. Adds 0.5kB. Signing time >1s (not constant-time), and
verification time >35ms.

How many (bytes) is too many?
Sizing up post-quantum signatures, 2021: We found that every 1kB added to the
TLS handshake slows it down by about 1.5% at the median.

13

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

How many (bytes) is too many?
Sizing up post-quantum signatures, 2021: We found that every 1kB added to the
TLS handshake slows it down by about 1.5% at the median.

Chromium Security Design Principles, 2024: “Adding ~7kB is implausible unless a
cryptographically relevant quantum computer (CRQC) is tangibly imminent.”

Another look at PQ signatures, 2024: Median bytes transferred from server to
client for the lifetime of non-resumed QUIC connections to Cloudflare is 4.4kB.
● Classical signatures and public keys already account for about 25% of all

bytes transferred on over half the connections!

If PQ signatures are too expensive, the real risk is that we deploy too late!
14

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://www.chromium.org/Home/chromium-security/post-quantum-pki-design/
https://blog.cloudflare.com/another-look-at-pq-signatures/

Leaving out
intermediates
Most browsers ship intermediates,
so why bother sending them?

Signature #5

Ship in browser
instead

Leaving out intermediates

Three proposals:
● 2019, draft-kampanakis-tls-scas, send flag to indicate server

should only return leaf. Simple but error prone.
● 2022, draft-ietf-tls-cert-abridge, replaces intermediates with

identifiers from yearly updated central list from CCADB. Client
sends version of latest list. Also proposes tailored compression.

● 2023, draft-davidben-tls-trust-expr. Simplified: client sends which
trust store it uses, and the version it has. CA adds as metadata to
a certificate, in which trust store (version) it’s included. Trust
stores can then add intermediates as roots.

https://datatracker.ietf.org/doc/draft-kampanakis-tls-scas-latest/
https://datatracker.ietf.org/doc/draft-kampanakis-tls-scas-latest/
https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/
https://datatracker.ietf.org/doc/draft-davidben-tls-trust-expr/

Savings leaving out intermediates: median 3kB

From Dennis Jackson’s draft-ietf-tls-cert-abridge-00

Savings apply even before PQ!

We will be experimenting with
leaving out intermediates in
2025.

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/00/

KEMTLS
(aka. Authkem)
Use KEM instead of signature for
handshake authentication.

Signature #5Replace with KEM
later in handshake

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/

KEMTLS
Replacing ML-DSA44 handshake signature with ML-KEM768 saves
2.9kB server → client, but adds 768B in the second flight client
→ server.
At the moment gains are modest. Interesting for embedded, to
reduce code size by eliminating primitive. Client authentication
with KEM requires extra roundtrip.
Large change to TLS. Subtle changes in security guarantees. We
contributed to a formal analysis.
Proof-of-possession unclear. Could be done with lattice-based
zero-knowledge proofs or challenge-response.

https://eprint.iacr.org/2022/1111

Merkle Tree
Certificates

Signature #5

inclusion proof
(<1kB)

Pain-points of current WebPKI

OCSP is expensive to run, whereas majority of users don’t use
it, but rely on CRL instead (via eg. CRLite).
Too many signatures (designed assuming signatures cheap).
Certificate Transparency is difficult to run.
Many sharp edges: path building, punycode, constraint
validation, etc.
(Domain control validation is imperfect — not addressed.)

Changing the WebPKI

With the post-quantum migration, the marginal cost of
changing the WebPKI is lower than ever.
There is a huge design space, with many trade offs.
Merkle Tree Certificates (MTC) is a concrete, ambitious, but
early draft. We’re looking for feedback on the design and
general direction.
Not a complete replacement for current WebPKI: it makes the
common case fast and falls back to X.509+CT.

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

Merkle Tree Certificates
tl;dr
Goal: Efficiently authenticate a TLS key,
making the common case fast.

Strategy: Replace entire PKI proof with a
single <1kB Merkle Tree inclusion proof.

Scope:

● Short-lived certificates (14 days, ACME)
● Up-to-date relying parties (browsers)
● Significant processing delay (1 hour)

Fall back1 to X.509+CT for everything else
(new domain registration, overlooked cert
renewal, unplanned domain move).

1. Fallbacks needed <0.1% of the time: SCT Auditing Revisited

Signature #5

inclusion proof
(<1kB)

https://transparency.dev/summit2024/sct-auditing.html

Merkle Tree Primer

Build a tree over inputs (d0, d1, d2, d3).

Each node is hash of children, and root hash
(“tree head”) commits to entire tree.

Need O(log n) hashes to prove input is in tree.
Inclusion proof for d2 is [d, e].

root=H(e,f)

e=H(a,b) f=H(c,d)

a=H(d0) b=H(d1) c=H(d2) d=H(d3)

d0 d1 d2 d3

Inputs are assertions: TLS key ⇔ DNS name.

CAs periodically build Merkle trees from
batches of assertions, and publish tree +
signature on tree head.

Clients periodically fetch latest tree heads.

In TLS, server presents a certificate consisting
of an assertion + inclusion proof. Client
validates proof against tree head.

Merkle Tree Certificates (simplified)

root=H(e,f)

e=H(a,b) f=H(c,d)

a=H(d0) b=H(d1) c=H(d2) d=H(d3)

d0 d1 d2 d3

There are currently about 2 billion unexpired certificates in CT.
If reissued every 7 days by one MTC CA, we’d have hourly
batches of 12 million assertions.
That amounts to authentication paths of 768 bytes, and with a
ML-DSA44 public key a typical Merkle tree certificate will be well
below 2.5kB, smaller than only the median compressed
classical intermediate certificate of 3.2kB.

Size estimates

Certificate Authorities
Similar to X.509 CAs, MTC CAs make
assertions on behalf of authenticating
parties (servers).

At set time, eg. hourly, CA publishes:

● The batch of assertions they certify. All
assertions in a batch are implicitly valid
for the same window, eg. 14 days. For
each batch, the CA builds a Merkle tree
on top.

● A signature on the tree heads of all
currently valid batches.

TLS authentication
Server (auth. party) gets inclusion proof, and
combines with assertion to get MTC.

● With 14 day lifetimes, keep two MTCs 7
days apart and a backup X.509 cert.

Client (relying party) gets trusted tree heads.

In TLS, client sends sequence number of
latest batches it knows for each MTC CA. If
client is sufficiently up-to-date, server returns
a MTC or otherwise falls back to X.509.

Client trusts the MTC if the inclusion proof
validates for one of its trusted tree heads.

Transparency Service
Intermediary in front of CAs that ensures all
assertions are publicly logged and
auditable.

● Mirrors CA assertions for monitors to
audit.

● Provides window of valid batch tree
heads to relying parties.

Key responsibility: if a relying party sees a
tree head, the corresponding tree is
available to monitors.

Transparency service makes MTC robust
against CA failures (split views, downtime).

MTC Demo - Create a CA
Create a CA.

$ mtc ca new --batch-duration 5m --lifetime 1h 123.4.5 ca.example.com

See which files were created.

./signing.key

./www/mtc/v1/ca-params

./queue

Inspect CA parameters.

$ mtc inspect ca-params www/mtc/v1/ca-params

issuer 123.4.5

start_time 1736361423 2025-01-08 13:37:03 -0500 EST

batch_duration 300 5m0s

life_time 3600 1h0m0s

storage_window_size 24 2h0m0s

validity_window_size 12 <- this is just 1h / 5m

http_server ca.example.com

public_key fingerprint ml-dsa-87:8a217229497d6b0ef2911c60da284df59a6543b785a8e307c8239e6c94d585f2

https://github.com/bwesterb/mtc

https://github.com/bwesterb/mtc

MTC Demo - Queue an assertion
Create an assertion (similar to a CSR)

$ openssl ecparam -name prime256v1 -genkey -out p256.priv

$ openssl ec -in p256.priv -pubout -out p256.pub

$ mtc new-assertion --tls-pem p256.pub --dns example.com -o my-assertion

checksum: a5036ed9faf56d72d36ba7fc6ce2de19323b2ec4da88cc848cebb42e5f2e841c

$ mtc inspect assertion my-assertion

subject_type TLS

signature_scheme p256

public_key_hash a8530c7f69c85989c60a8a40c34975e7a8e2610bbd39bc8e51784e0f19726b17

dns [example.com]

Submit it to the CA.

$ mtc ca queue -i my-assertion

$ mtc ca show-queue

checksum c79d5fc55790456de2c08c7f6cfb7adebaf24acd7393826899d3621c0d9d4caa

subject_type TLS

signature_scheme p256

public_key_hash a8530c7f69c85989c60a8a40c34975e7a8e2610bbd39bc8e51784e0f19726b17

dns [example.com]

Total number of assertions in queue: 1

MTC Demo - Issue a batch of assertions
Try to issue the batch. Oops! Too early. (Usually this would be a cron job.)

$ mtc ca issue

2025/01/10 09:29:52 INFO Starting issuance time=2025-01-10T09:29:52.563-05:00

2025/01/10 09:29:52 INFO Current state expectedStored=⌀ expectedActive=⌀ existingBatches=⌀
2025/01/10 09:29:52 INFO No batches were ready to issue. Next batch ready in 54s.

Wait 54s (since we have 5m batch intervals) and try again... it worked!

$ mtc ca issue

2025/01/10 09:31:17 INFO Starting issuance time=2025-01-10T09:31:17.695-05:00

2025/01/10 09:31:17 INFO Current state expectedStored=0 expectedActive=0 existingBatches=⌀
2025/01/10 09:31:17 INFO To issue batches=0

Batch 0 has been created!

$ find . -type f

./signing.key

./www/mtc/v1/ca-params

./www/mtc/v1/batches/0/tree

./www/mtc/v1/batches/0/abridged-assertions

./www/mtc/v1/batches/0/signed-validity-window

./www/mtc/v1/batches/0/index

./queue

MTC Demo - Issue a batch of assertions
Batch 0 has been created!

$ find . -type f

./signing.key

./www/mtc/v1/ca-params

./www/mtc/v1/batches/0/tree

./www/mtc/v1/batches/0/abridged-assertions

./www/mtc/v1/batches/0/signed-validity-window

./www/mtc/v1/batches/0/index

./queue

Inspect the issued assertions.

$ mtc inspect abridged-assertions www/mtc/v1/batches/0/abridged-assertions

key 5401b10a7e8dfa8cedaa1178e4576c240b0087629d5e4fe0ae178e019f2e26ef

subject_type TLS

signature_scheme p256

public_key_hash a8530c7f69c85989c60a8a40c34975e7a8e2610bbd39bc8e51784e0f19726b17

dns [example.com]

Total number of abridged assertions: 1

MTC Demo - Issue a batch of assertions
Batch 0 has been created!

$ find . -type f

./signing.key

./www/mtc/v1/ca-params

./www/mtc/v1/batches/0/tree

./www/mtc/v1/batches/0/abridged-assertions

./www/mtc/v1/batches/0/signed-validity-window

./www/mtc/v1/batches/0/index

./queue

Inspect the tree.

$ mtc inspect tree www/mtc/v1/batches/0/tree

number of leaves 1

number of nodes 1

root 87463d48df7bd1420625cc21dadeb2d9eaf85c10db293eeadfc9d01e65ccd574

MTC Demo - Issue a batch of assertions
Batch 0 has been created!

$ find . -type f

./signing.key

./www/mtc/v1/ca-params

./www/mtc/v1/batches/0/tree

./www/mtc/v1/batches/0/abridged-assertions

./www/mtc/v1/batches/0/signed-validity-window

./www/mtc/v1/batches/0/index

./queue

Inspect the signed validity window (signature over all valid batch tree heads).

$ mtc inspect -ca-params www/mtc/v1/ca-params signed-validity-window www/mtc/v1/batches/0/signed-

validity-window

signature

batch_number 0

tree_heads[-11] 481f8e05ff34cb6314159cb5756c5f536b209442b99b4ea88157fc1aa6ec2341 <- placeholder

tree_heads[-10] 481f8e05ff34cb6314159cb5756c5f536b209442b99b4ea88157fc1aa6ec2341

<snip>

tree_heads[-1] 481f8e05ff34cb6314159cb5756c5f536b209442b99b4ea88157fc1aa6ec2341

tree_heads[0] 87463d48df7bd1420625cc21dadeb2d9eaf85c10db293eeadfc9d01e65ccd574

MTC Demo - Issue a batch of assertions
Batch 0 has been created!

$ find . -type f

./signing.key

./www/mtc/v1/ca-params

./www/mtc/v1/batches/0/tree

./www/mtc/v1/batches/0/abridged-assertions

./www/mtc/v1/batches/0/signed-validity-window

./www/mtc/v1/batches/0/index

./queue

Inspect the index, which maps hash of assertion to index in batch.

$ mtc inspect index www/mtc/v1/batches/0/index

key seqno offset

5401b10a7e8dfa8cedaa1178e4576c240b0087629d5e4fe0ae178e019f2e26ef 0 0

total number of entries: 1

Merkle Tree Certificates next steps

We are working with Chrome and others to experiment in 2025.
More feedback and collaboration is welcome!
Learn more:
● David Benjamin’s TLS working group IETF 116 presentation
● Draft specification: https://davidben.github.io/merkle-tree-

certs/draft-davidben-tls-merkle-tree-certs.html
● MTC CA implementation: https://github.com/bwesterb/mtc

https://youtu.be/u_sFyz4F7dc?si=inG4bgBwKLzrBuvY&t=2566
https://davidben.github.io/merkle-tree-certs/draft-davidben-tls-merkle-tree-certs.html
https://davidben.github.io/merkle-tree-certs/draft-davidben-tls-merkle-tree-certs.html
https://github.com/bwesterb/mtc

Wrapping up

We saw several different approaches to cope with large post-
quantum signatures, from simple to ambitious.
There are still many unknowns: among others, compliance
requirements; cryptanalytic breakthroughs; ecosystem
ossification; stakeholder constraints; etc.
Which approach to take? Best to try them all and see which
ones gain traction.

Thank you, questions?
Please reach out if you want to collaborate on testing these
approaches @ ask-research@cloudflare.com

mailto:ask-research@cloudflare.com

