Cryptography Conference

Quantum-Safe Secure Boot: How hard can it be?

Secure boot is hard. Quantum-safe secure boot is even harder. It starts with the choice of a suitable algorithm. On the signature verification side, conflicting regulatory requirements on Post-Quantum/Traditional (PQ/T) hybrid mean there is no silver-bullet, while on the signature generation side, key management challenges and the lack of available end-to-end quantum-safe solutions further complicate the decision process. In this talk we highlight open issues at various stages of the secure boot lifecycle.

PKI Consortium Inc. is registered as a 501(c)(6) non-profit entity ("business league") under Utah law (10462204-0140) | pkic.org

Quantum-Safe Secure Boot

How hard can it be?

Dr. Axel Y. Poschman

Confidential - Copyright PQShield Ltd - All Rights Reserved

Speaker: about me

Dr. Axel Y. Poschmann axel.poschmann@pqshield.com

<u>Linkedin</u>

xen1thLabs

- 2006-2009 U Bochum: PhD in Lightweight Cryptography
- 2009-2014 NTU: Asst Prof in Cryptographic Engineering
- 2014-2017 NXP Semiconductors: Leading internal hardware hacking team
- 2017-2023 xen1thLabs: General Manager of the NTVL of the UAE
- 2022 INSEAD: Executive MBA
- 2023 PQShield:
 VP of Product

Secure Boot: why act now?

All markets with long product life cycles have to act now:

- Semiconductors
- Automotive
- Defense
- •••

Secure Boot: the bedrock of cybersecurity

Secure Boot: full PQC or PQ/T Hybrid?

Secure Boot: deprecated and disallowed algorithms

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
USA	Fully PQC										
UK UK	Fully PQC										
AUS	Fully PQC										
FR	PQ/ T Hybrid				Fully PQC						
DE	PQ/ T Hybrid				Fully PQC Optional						
Conflicting regulatory requirements regarding use of RSA and ECDSA regional algorithms					**						

Painpoints: PQ/T Hybrid = 2x complexity

PQ/T Hybrid doubles number of algorithms to support

Increases cost due to increased

Memory

o Area

Greater	computationa	l overhea
---------	--------------	-----------

- D Latency
- Energy consumption

Greater bandwidth overhead

- Latency
- Throughput

Increased complexity results in more difficult:

Maintenance

Analysis

Secure implementation

Protectability: Side-Channel

Algorithm	Grade (5= best)	Argument
ML-DSA	3	Operations computing directly on the long term secrets are easy to protect, while ephemeral secrets involve more complicated operations.
FN-DSA		Contains floating point operations vulnerable to SCA.
SLH-DSA	5	Due to the structure of HBS, very few SCA attack paths exist.
LMS	5	Similar to SLH-DSA, but with a limited number of traces available.
XMSS	5	Similar to SLH-DSA, but with a limited number of traces available.

Protectability: Fault Attack

Algorithm	Grade (5= best)	Argument
ML-DSA	3	Protection against loop-abort attacks required. Full signature recomputation has relatively low performance cost due to rejection sampling.
FN-DSA	2	Recomputation countermeasure against FA using faulty valid signatures, is more costly than for ML-DSA.
SLH-DSA]	FA forcing multiple uses of one time signature (WOTS) scheme.
LMS]	Similar to SLH-DSA but with a limited number of faults.
XMSS]	Similar to SLH-DSA but with a limited number of faults.

•••

Secure Boot Challenges: no silver bullet in sight

Algorithmic choice: no silver bullet in sight

Secure Boot: trade-offs, hardware, and software

- Performance •
- Security
- Cost •

•

Take away: optimized, flexible HW/SW solutions required

- CNSA2.0 already mandates quantum-safe secure boot today
- Secure boot is the bedrock of cybersecurity
- Different regulatory timelines -transition and deprecation- require configurability
- For the foreseeable future a zoo of algorithms -PKC and PQC- need to be supported
- No silver bullet available

Flexible HW/SW co-design solutions optimized for specific use cases required

