Cryptography Conference

Hybrid PQC E-Mail Communication: Easing Migration Pain

Secure e-mail communication is a natural fit for hybrid cryptography, offering long-term confidentiality and nonrepudiation for users. This talk introduces a prototype system comprising a Certificate Authority, Certificate Management System, and an extended Open Source client application, including an integration module for Microsoft Outlook. The presentation explores the selection criteria for hybrid schemes and the rationale behind choosing Composite and ICA approaches to facilitate PKI and S/MIME migration. It also shares insights from implementing and using pure PQC, Composite, and ICA hybrid constructions. Topics include certificate creation, client enrollment, and securely signing and encrypting e-mail messages using S/MIME across various cryptographic configurations, emphasizing the hybrid integration of classical and post-quantum secure cryptography.

Jan Klaußner

Senior Product Architect at Bundesdruckerei GmbH

KEÝFACTOR

January 15 and 16, 2025 - Austin, TX (US) | Online

Hybrid PQC E-Mail Communication Easing Migration Pain

Date15/01/2025LocationPKI Consortium – PQC ConferenceAuthorJan Klaussner

DELC

Why E-Mail?

Cryptographic Dependencies (non-exhaustive)

- S/MIME uses CMS for cryptography
- CMS is used in many other protocols
- Almost all also use X.509 certificates
- Migrating CMS solves issue for all others

PQC E-Mail - Goals

- Prototype targets agencies and businesses
- Use case which is widely used in real world application
- Usage of S/MIME
- Integration in Microsoft Outlook (Windows)
- FOSS

Interesting sidenote: In specific configurations, the FOSS we modified is currently to secure classified information

The Inevitable - Hybrids

BSI, ANSSI et al. require combination of classic and PQC mechanisms^[1]

Trust in Mathematical Security?

New approaches still need more review (see SIKE)

Trust in Implementation?

New complex algorithms prone to implementation faults (see EUCLEAK)

An efficient key recovery attack on SIDH

Wouter Castryck^{1,2}¹ and Thomas Decru¹

 1 imec-COSIC, KU Leuven, Belgium 2 Vak
groep Wiskunde: Algebra en Meetkunde, Universiteit Gent, Belgium

EUCLEAK

Side-Channel Attack on the YubiKey 5 Series

and Breaking Infineon ECDSA Implementation o

Thomas Roche

NinjaLab, Montpellier, France thomas@ninjalab.io

September 3^{rd} , 2024

[1] ENISA "Postquantum cryptography: integration study" 2022; for Germany: BSI (Federal Office for Information Security) "*Migration to Post Quantum Cryptography: Recommendations for action by the BSI*, ver.1.0, 31 May 2021; France: ANSSI "ANSSI views on the Post-Quantum Cryptography transition", 30 March 2022; Spain: Centro Criptografico ´ Nacional, "*CCN-TEC 009. Recommendations for a safe post-quantum transition*" (2022).

How to Hybrid

Organisation/ Application Layer

Protocol Layer

Needs additional user interaction

e.g. Parallel PKIs, Double Signing High effort, high chance of errors

Solution for every Protocol and Service

Every Protocol with own flavor Synchronization is hard, "Adapter" required

Crypto Layer

Algorithm as combination of algorithms

Can be used directly in all Protocols without friction

How to Hybrid in Protocols			Current e-mail clients expect only one signature/certificate
	Organisation/ Application Layer	Encryption Hybrid not possible with existing standar	 > Update Crypto-Lib > Change clients to handle multiple
	Protocol Layer	Signatures Counter Signatures in CMS (RFC-5652) Multiple Signatures in CMS (RFC-5752)	 signatures Change clients to handle multiple certificates
	Crypto Layer	Certificates X.509 Isara Catalyst (ITU-T X.509 10/2019) Related Certificates (draft-ietf-lamps-cert-binding-fe	or-multi-auth)

Hybrid PQC in Protocol Layer - Example

"The experimentation presented several challenges. Firstly, there were issues with the mail server processing a new email format. Existing email plugins, policies, or anti-malware systems might modify message headers or block emails due to unrecognised formats. Some systems may even issue warnings to recipients about unknown senders. These issues stemmed from the hybridised S/MIME content type and attachment extensions, leading to downstream complications."

Securing digital communications between the Banque de France & the Monetary Authority of Singapore Quantum-safe experiment report, November, 2024

How to Hybrid in Crypto Layer Encryption **Organisation**/ Combiner function for hybrid KEMs (d **Application Layer** combiners) Compound key/signature consisting of one ML-DSA and one traditional **Signatures** key/signature **Protocol Layer** Composite ML-DSA (draft-ietf-lamps Intelligent Composed Algorithms (ia Signatures are weakly linked, AND combiner Certificates Composite ML-DSA (draft-ietf-lamps-pq-composite-sigs) **Crypto Layer** Composite ML-KEM (draft-ietf-lamps-pq-composite-kem) Intelligent Composed Algorithms (iacr 2021/813)

How to Hybrid in Crypto Layer

Organisation/

Application Layer

Protocol Layer

Crypto Layer

Encryption Combiner function for hybrid KEMs combiners)

Signatures

Composite ML-DSA (draft-ietf-lamp Intelligent Composed Algorithms (ia

Certificates

Composite ML-DSA (draft-ietf-lamp-p) Composite ML-KEM (draft-ietf-lar s-pq-composite-kem) Intelligent Composed Algorithms (iacr 2021/813)

Compound key consisting of arbitrary number of keys (Signature and KEM)

Compound Signature consisting of arbitrary number of signatures

Signatures can have AND/OR/K-of-N combiner

<u>bun</u>desdruckerei.

PQC Mail Client

PQC Integration for MS-Outlook Microsoft Cryptography API: Next Generation

system wide integration of proprietary signature and encryption modules by mapping of OID to DLL with standardized ABI

other native applications and tools are PQ-safe (e.g. AD, Edge, Word, VPN)

no access to algorithm parameters no modification outside crypto module possible > no CMS parsing for KEMs

PQC Integration for MS-Outlook GNU Privacy Guard

integration via Outlook plugin

+

GnuPG-components also in other operating systems usable

usable for existing GnuPG VSDesktop for classified communication

additional installation

Post Quantum Secure E-Mail Client S/MIME Implementation based on GnuPG

Achieved

- ✓ tested plugin for Microsoft Outlook
- ✓ certificate/key import in Kleopatra (PKCS#12)
- ✓ file encryption/signature via Kleopatra
- ✓ X.509/CMS parsing: Composites, ICAs, Single
- ✓ low level integration of liboqs (PQC cryptolib)
- \checkmark User Application does not need to change

Open topics

- combine Signature and KEM keys in one certificate
- FOSS release by Bundesdruckerei

PQC Certificate Management System

PQC Certificate Management System

Cryptographic Schemes

- ECDH, RSA encryption
- ML-KEM (Kyber, NIST Draft FIPS 203)
- ECDSA, RSA signature
- ML-DSA (Dilithium, NIST Draft FIPS 204)
- SLH-DSA (Sphincs+, NIST Draft FIPS 205)
- LMS, XMSS (NIST SP 800-208)

Plain/Hybrid/Mixed PKIs

- Composite Signatures/KEMs (IETF Drafts)
- Intelligent Composed Algorithms (AND, OR, K-of-N)
- Certificate issuance via Certificate Management Protocol
- Revocation: Certificate Revocation List

PQC Subscriber Client

Presets of Root/SubCA combinations, e.g.

- LMS -> ML-DSA+ECDSA
- ML-DSA+ECDSA
 -> ML-DSA+ECDSA
- SLH-DSA -> SLH-DAS
- ...many more

Open Topics

- \circ Proof of possession
- HSM support

	Subject
X.509 stuff	Subject Alterna
Select Root/SubCA	Product Numb Revocation In Password
Select your algorithm	End date KeyPair Gene RSA EC
	XMSS Dilithium Kyber SphincsPlu Composite

Post-Quantum CA - Client GUI - 1.19.7											
New Certificate Revocation											
Certificate Information											
Subject	C=DE, O=Musterfirma, OU=IT, L=Berlin, ST=Berlin, CN=www.musterfirma.de										
	Туре	Content									
	DNS_NAME	www.musterfirma.de									
Subject Alternative Names	EMAIL	erika.mustermann@musterfirma.de									
	< [>						
	EMAIL	erika.mustermann@musterfirma	Add SAN								
	Remove SAN										
Product Number	EC-under-SPHINCSPLUS	▼ EC P-384 under SPHINCS+ SLH-DSA-S	HA2-128f								
Revocation Information		KeyStore Information									
Password	ABC123	Pin	123456								
End date	07.09.2025										
KeyPair Generation Parameters											
RSA	Key Size	2048 -									
EC	Curve Name	secp256r1 👻									
XMSS	Param	XMSS_SHA2_10_256 -									
Dilithium	Dimension	4x4 -									
Kyber	Params	kyber512 👻									
SphincsPlus	Params	sha2-128f 👻									
Composite	Oid	ML-KEM-768-X25519 -									
ICA (select at least two composed algorithms)		KeyPair Generator Provider									
KOF_N	2	BouncyCastle									
AND		Botan (disabled)									
OR				Send requ	lest						

Yet to Solve

Automatic Distribution of Encryption Key

Today

- 1. user A sends signed mail with **one** Certificate
- 2. User B can extract A's public key from its certificate and verify the signed mail
- User B can use A's public key to encrypt a mail and sends it back
- 4. User A can decrypt B's mail

With PQC

PQC algorithms can not both sign and encrypt

- only signature certificate can be distributed
- separate encryption certificate is needed
- manual distribution is cumbersome

Solution 1 – Application Layer: Send two certificates

- support by each application needed
- experience shows its prone to errors

Solution 2 – Protocol Layer ISARA Catalyst

- ✓ one certificate
- ✓ specified (although not intended this way)
- \checkmark usable with ICA and Composite keys

needs adapter code to separate keys

Solution 3 – Crypto Layer:

Extension for Intelligent Composed Algorithms

- ✓ one compound key combining signature key(s) and encryption key(s)
- ✓ one certificate
- specification required

Hybrid PQC E-Mail Prototype

- Hybrids on crypto level are easy to integrate
- ✓ user experience remains simple

t.b.d.

 automatic encryption key distribution

Thank you.

Jan Klaussner

Bundesdruckerei GmbH Innovations email: jan.klaussner@bdr.de Phone: + 49 (0) 151 - 56001986

Please note: This presentation is the property of Bundesdruckerei GmbH. All of the information contained herein may not be copied, distributed or published, as a whole or in part, without the approval of Bundesdruckerei GmbH. © 2025 by Bundesdruckerei GmbH Part of the Bundesdruckerei Group