
Post-Quantum

Cryptography Conference

Update on end-to-end PKI and HSM integrations
with ML-DSA
At last years PQC Conference we benchmarked Hardware Securtiy Modules with Dilithium. Now that FIPS-204 is
released, it is time to forget about Dilithium and do production level integrations using ML-DSA. This session shows
PKI application integration for issuing certificates, with a number of HSMs that are ready for ML-DSA. We will
highlight how easy, or hard, it is to integrate using PKCS#11 or REST APIs. Of course there will be benchmarks of
certificate issuance comparing ML-DSA against classic algorithms. Let's see what else we are able to squeeze in
until January.

Tomas Gustavsson
Chief PKI Officer at Keyfactor

January 15 and 16, 2025 - Austin, TX (US) | Online

PKI Consortium Inc. is registered as a 501(c)(6) non-profit entity (“business league”) under Utah law (10462204-0140) | pkic.org

https://www.ssl.com/
https://pqshield.com/
https://www.hidglobal.com/
https://www.keyfactor.com/
https://www.entrust.com/

Chief PKI Officer

Keyfactor

Tomas

Gustavsson

End-to-end PQC and
HSM integrations
(with PKI)

Signing Speed – Recap

4

5

6

35

31

31

44

24

31

46

42

44

57

53

Dilithium5

Dilithium3

Dilithium2

P-521

P-384

P-256

RSA3072

Network over cloud – high latency: +-10%

HSM 2 HSM 1

8605

11381

11536

4575

9323

22755

2950

Dilithium5

Dilithium3

Dilithium2

P-521

P-384

P-256

RSA3072

Local installed – low (no) latency

Certificate Issuance - Recap

0 100 200 300 400 500 600 700 800 900 1000

Dilithium5

Dilithium3

Dilithium2

P-521

P-384

P-256

RSA3072

-20%

-14%

-13%

8%

6%

13%

Zero

Dilithium

ML-DSA / FIPS 204

Kyber

ML-KEM / FIPS 203

SPHINCS+

SLH-DSA / FIPS 205

ML-DSA server

certificate

ML-DSA CA certificate
ML-DSA server

certificate

TLS ML-KEM hybrid

key exchange

ML-DSA signature

certificate

ML-KEM encryption

certificate

Secure eMail with

S/MIME

Secure comm with

TLS

ML-DSA CA

ML-DSA Signing ML-DSA signature

certificate

Firmware Verification

ML-KEM encryption

Document Signatures

Server
Apache

HTTPd/NginX/IIS

Putting it all together

What about PKI and

Signing?

You will notice the difference between

different tokens...

• Using SoftHSM is in-memory

• PCI HSMs are in-memory

• Network based HSMs pass the network

stack and wire (latency)

• Cloud HSMs pass the Internet

There is a reason why hash-and-sign is

efficient

There is also a reason why hash-and-sign is

legacy

PKI and Digital Signatures always use

HSMs in production.

REST vs PKCS#11

Application

HSM HSM

Application

P11 Client

OS, etc

PQC
in Practice

Certificate Issuance HSM 1
REST remote Internet

RSA 2048

RSA 3072

P-256

ML-DSA-44/65/87

LMS H5 Handles parallel requests

Certificate Issuance HSM 2
REST remote Internet

RSA 2048

RSA 3072

P-256

ML-DSA-44/65/87

LMS H10 Does not handle parallel requests

Not available

Certificate Issuance HSM 3
PKCS#11 remote Internet

RSA 2048

RSA 3072

P-256

ML-DSA-44/65/87

LMS H10 <1/s, no parallel requests

Not available

Certificate Issuance HSM 4
PKCS#11 local container

RSA 2048

RSA 3072

ML-DSA-44/65/87

P-256

LMS

Certificate Issuance HSM 5
PKCS#11 – local SW

RSA 2048

RSA 3072

ML-DSA-44/65/87

P-256

LMSMS Not available

Signing what? How much?

Sizes vary

• Certificates are small

• CRLs are small to large

• Bank transactions are small

• Documents are small to medium

• Firmware is large to huge

There is a limit on the data we can stream

to a network connected HSM and expect it

to work.

Some popular options currently have 4KB

limit of the signature payload.

The new algorithms are were all just-sign

(not hash and sign)

CRL size limits
ML-DSA-44 / LMS

HSM 1 (REST)

HSM 2 (REST)

HSM 3 (PKCS11/

RAW or UPDATE)

HSM 4 (PKCS11/

RAW or UPDATE)

HSM 5

(PKCS11/RAW)

1MB, ~15.000 entries

360KB, ~6000 entries

120KB, ~2000 entries

14MB, ~240.000 entries

>600MB, >10M entries

Lessons.

Learned.

What about PKI and Signing?

FIPS 204: ML-DSA + HashML-DSA

FIPS 205: SLH-DSA + HashSLH-DSA

• CMS have always had a workaround – using

signed attributes – signs a hash.

• Easy, always include some signed attributes

– but debate is on-going.

• Other signature formats?

Signing

PKI

• draft-ietf-lamps-dilithium-certificates

stipulates ML-DSA and introduces

ExternalMu-ML-DSA to cope with CRLs

• In theory, you could have different

algorithms for certificates and CRLs

• Not seen before

• Compare Ed25519 and phEd25519

(hint, it's not fun)

Pre standard OIDs

1.3.6.1.4.1.2.267.7.4.4 – Dilithium2 / ML-DSA-IPD-44

1.3.6.1.4.1.2.267.7.6.5 - Dilithium3 / ML-DSA-IPD-65

1.3.6.1.4.1.2.267.7.8.7 - Dilithium5 / ML-DSA-IPD-87

FIPS 203, 204, 205 When can we start with

ML-DSA and friends?

Confused yet?

Must be changed to Standard OIDs (≠ML-DSA-IPD)

2.16.840.1.101.3.4.3.17 ML-DSA-44

2.16.840.1.101.3.4.3.18 ML-DSA-65

2.16.840.1.101.3.4.3.19 ML-DSA-87

+ HashML-DSA...2.16.840.1.101.3.4.3.32/33/34

HSMs – PKCS#11 (v3.1)
LMS

Same code tested with 2 HSMs so far.

final CKA ckaType = getAttribute(session, publicKeyRef, CKA.KEY_TYPE);

 if (CKK.HSS == ckaType.getValueLong()) {

 CKA ckaValue = getAttribute(session, publicKeyRef, CKA.VALUE);

 final HSSPublicKeyParameters params = HSSPublicKeyParameters.getInstance(keyBytes);

 final BCLMSPublicKey pub = new BCLMSPublicKey(params);

 }

HSMs – PKCS#11 (v3.2 - draft)
ML-DSA

 CKA ckaKeyType = getAttribute(session, publicKeyRef, CKA.KEY_TYPE);

 if (ckaKeyType.getValueLong() = CKK.ML_DSA) {

 CKA ckaValue = getAttribute(session, publicKeyRef, CKA.VALUE);

 final byte[] keyBytes = ckaValue.getValue();

 final MLDSAPublicKeyParameters params;

 switch (keyBytes.length) {

 case 1312:

 params = new MLDSAPublicKeyParameters(MLDSAParameters.ml_dsa_44, keyBytes);

 break;

 <snip>

 default:

 throw new InvalidKeySpecException("Invalid length of ML-DSA public key");

 }

 final BCMLDSAPublicKey pub = new BCMLDSAPublicKey(params);

 }

HSMs – REST

 Object jsonObjType = jsonKey.get("obj_type");
 if (jsonObjType != null && jsonObjType.equals("RSA")) {
 <snip>
 } else if (jsonObjType != null && jsonObjType.equals("MLDSA")) {

 Object jsonPublicKey = jsonKey.get("pub_key");
 JSONObject mldsa = (JSONObject)jsonKey.get("mldsa");
 Object parameterString = mldsa.get("param_set");
 if (parameterString == null) {

 log.info("ML-DSA key does not have parameters:" + mldsa);
 } else {

 MldsaParamSet parameterSet = MldsaParamSet.valueOf((String) parameterString);
 return Optional.of(new AsymmetricKey((String) jsonName, (String) jsonKeyId,

 Base64.getDecoder().decode(((String) jsonPublicKey)),
 parameterSet));

 }
 }
 return Optional.empty();

Issues Encountered

LMS/HSS public key

encoding

SubjectPublicKeyInfo vs

SubjectPublicKeyInfo-like

ASN.1 OctetString vs BitString –

Internet drafts changed

LMS vs HSS key and

signature

ACVP only have LMS signatures

LMS results are inconsistent

Slow to very slow, multithreaded

or not – not general use

Issues Encountered

ML-DSA vs ML-DSA-IPD –

things are not what they

seem to be

Context was added in the last

minute, when verification fails you

know it 'ipd'

ML-DSA vs HashML-DSA –

last minute decision

ExternalMu-ML-DSA

SLH-DSA, LMS, …

Different algorithm for certificates

and CRLs?

Signing large data

Careful testing needed – expect

different limits on different HSMs

How to document this so that

users understand?

Where are we now?

• ACVP testing is stable for FIPS standards

• BC 1.79 released with FIPS OIDs and 1.80 with

interop fixes

• IETF interop going well – few releases yet

• Some HSMs with FIPS 204 IPD

• Few HSMs with FIPS 204

• Some HSMs with LMS - inconsistent

• Unwise with Production until RFCs

• Start testing early

Removed Dilithium completely – it is not ML-DSA

This is the starting
point on the PQC
migration journey.

New algorithms will come in the future.

Maintaining crypto agility is a must.

Chief PKI Officer

Keyfactor

Tomas

Gustavsson

Quantum-safe
Cryptography,
HSMs and
Experiences

