Cryptography Conference

Architecting PKI Hierarchies for Graceful PQ Migration

Public Key Infrastructures (PKIs) are intricate systems to design, deploy, and maintain. As post-quantum cryptography (PQC) becomes a reality, one of the most challenging decisions will be algorithm selection. Historically, this has been straightforward—for example, using RSA-2048-SHA256 consistently throughout the PKI hierarchy. In a PQC world, this approach becomes less viable due to tradeoffs that may require different algorithms or parameters at each layer. For instance, long-term secure algorithms for end entities. Hybrid approaches further complicate these decisions, offering additional security or migration flexibility depending on the use case. This talk explores a "toolbox" of migration mechanisms for X.509 and presents example PKI hierarchies tailored to specific scenarios, illustrating how to navigate the complexity of algorithm choices for a graceful transition to post-quantum cryptography.

PKI Consortium Inc. is registered as a 501(c)(6) non-profit entity ("business league") under Utah law (10462204-0140) | pkic.org

Architecting PKI Hierarchies for Graceful PQ Migration

Mike Ounsworth Software Security Architect

PKI Consortium

January 2025

Austin, Texas

SECURING A WORLD IN MOTION

Agenda

- The Migration Problem and the Long Tail of X.509
- Which algorithm(s)?
- Toolbox
 - Heterogeneous PKIs
 - Hybrid PKIs for Ease of Migration
 - Hybrid PKIs for Security

The Migration Problem and the Long Tail of X.509

The Long Tail of X.509 Usage

"CORE"

Migration Considerations

Some questions you might ask yourself:

- Do you have compliance / regulatory requirements?
- Do you have long-term data security requirements (20+ years) ?
- Do you control your environment tightly enough to upgrade everything all at once, or do you need a staged migration?
 - If so, do you use only negotiated protocols (ex.: TLS) that will handle downgrade for legacy clients, or do you need to get backwards compatibility from the certificates themselves?
- Etc, etc, etc.

PQC Migration Toolbox

PQC Migration Toolbox

	Migration Tool	Description	Use Case
E X C	Flag Day	Change everything to PQC on Jan 1st.	You control everything, and can upgrade everything at the same time.
X	Mixed PKI / Heterogeneous PKI	Use different algorithms at different layers of the PKI	Optimize for long-term security at the top. Optimize for performance / bandwidth at the bottom.
	Hybrid: Multiple Certificates / Parallel PKIs	Run independent Traditional and PQ PKIs. Issue everything with two certs.	Cases where clients can negotiate algorithms (TLS, VPN), or can gracefully ignore extra signatures (maybe S/MIME, code signing?).
	Hybrid: Catalyst / Chimera / AltPubKey	Put a second pub key and sig into a non-critical X.509v3 extension.	Similar to Parallel PKIs, but where the certificate itself needs to be transparently backwards compatible.
	Hybrid: Composite	It looks like a single key, but actually contains two algorithms inside.	Need strong dual algorithm security in protocols that do not natively support negotiation or multiple algorithms.

Mixed PKI

Mixed PKIs

 Idea: Root CAs, Issuing CAs, and End Entity certificates have different requirements for long-term security, throughput, and bandwidth, so we can consider mixing & matching algorithms.

Multiple Certificates

Multiple Certificates

- Traditional and PQ PKIs operate in parallel.
- Each end entity gets two certificates.
- Pro: simple to deploy.
- Con: forwards all the complexity of hybrid / negotiation to the client.

Multiple Certificates

- Con: forwards all the complexity of hybrid / negotiation to the client.
- This works well for online negotiated protocols ex.: TLS, VPN, SSH.
- For offline / non-negotiated protocols such as S/MIME email, PDF signing, anything involving hardware smartcards, etc, it becomes tricky to figure out what kind of signature these two certificates are supposed to produce on any given document.

Multiple Certificates Passive or Active Backwards Compat

- CMS: Yes -- passive
 - Multiple SignerInfos allowed in OR-mode (but not all clients implement this correctly)
- OpenPGP: Yes -- passive
 - Multiple Signature packets allowed in OR-mode.
- XML D-Sig: No?
 - My quick reading of w3.org/TR/xmldsig-core1 is inconclusive about whether multiple
 <SignatureValue> elements are allowed, or what the processing rules would be in that case.
- TLS: Yes -- active
 - ClientHello advertises "signature_algorithms" and "signature_algorithms_cert" which allows the server to select the correct certificate.
- JWT / CWT: Maybe?
 - RFC 7515 (JWS) talks about a "signatures" array. Unclear how well-supported this is.

Multiple Certificates Hybrid Security

- CMS: Yes
 - RFC 5752 "Multiple Signatures in CMS".
 - Each CMS SignerInfo is cross-linked to each other SignerInfo.
 - Unclear how well supported this is.
- OpenPGP: No?
- XML D-Sig: No?
- TLS: No?

subjectAltPublicKeyInfo / altSignatureAlgorithm

aka "ITU-T X.509 2019 Hybrid" aka "ISARA CATALYST"

subjectAltPublicKeyInfo / altSignatureAlgorithm (aka "ISARA CATALYST" or "Chimera")

- (sometimes referred to as "hybrid certs", but this is confusing for obvious reasons)
- New X.509 v3 extensions: subjectAltPublicKeyInfo, altSignatureAlgorithm, altSignatureValue do exactly the same thing as their "primary" equivalents, but allow for a second alternate public key and signature to be carried in a certificate.

subjectAltPublicKeyInfo -- AltPubKey

• Simple to deploy:

ITU-T X.509 2019, section 7.2.2 "Multiple cryptographic algorithms for public-key certificates"

subjectAltPublicKeyInfo -- AltPubKey

• Simple to deploy:

- But it's not clear how you actually sign with it.
- Conclusion: possibly useful in some niche scenarios, but is not straightforward to use.

ITU-T X.509 2019, section 7.2.2 "Multiple cryptographic algorithms for public-key certificates"

Passive

Backwards

Compat

Hybrid

Security

Composite

Composite Signatures

- Idea: rather than use id-MLDSA44, use id-MLDSA44-RSA2048-PSS-SHA256.
- If you have a FIPS certified RSA-PSS implementation, then you can have a FIPS certified id-MLDSA44-RSA2048-PSS-SHA256 without re-certifying anything.
- Needs to be coupled with one of the mechanisms above to achieve Backwards Compatibility.
- But, has **Protocol Backwards Compatibility** in that all of the hybridization is handled within the cryptographic algorithm; it still produces one public key and one signature; so no protocol modifications are needed except for supporting the new AlgorithmID OID.

Composite Encryption

ENTRUSI

- Bonus! Composites are the only mechanism that allow for multiple algorithms to be used to perform a single AND-mode encryption.
 - The recipient must have both private keys in order to decrypt the data.
 - An attacker must break both algorithms in order to decrypt the data.
- Idea: rather than use id-MLKEM512, use id-MLKEM512-RSA2048-KMAC128.

https://datatracker.ietf.org/doc/

²⁴ draft-ietf-lamps-pq-composite-kem/

PQC Migration Toolbox

Migration Tool	Description	Use Case
Flag Day	Change everything to PQC on Jan 1st.	You control everything, and can upgrade everything at the same time.
Mixed PKI / Heterogeneous PKI	Use different algorithms at different layers of the PKI	Optimize for long-term security at the top. Optimize for performance / bandwidth at the bottom.
Hybrid: Multiple Certificates / Parallel PKIs	Run independent Traditional and PQ PKIs. Issue everything with two certs.	Cases where clients can negotiate algorithms (TLS, VPN), or can gracefully ignore extra signatures (maybe S/MIME, code signing?).
Hybrid: Catalyst / Chimera / AltPubKey	Put a second pub key and sig into a non-critical X.509v3 extension.	Similar to Parallel PKIs, but where the certificate itself needs to be transparently backwards compatible.
Hybrid: Composite	It looks like a single key, but actually contains two algorithms inside.	Need strong dual algorithm security in protocols that do not natively support negotiation or multiple algorithms.

Thank You!

mike.ounsworth@entrust.com

entrust.com

SECURING A WORLD IN MOTION

© Entrust Corporation