Cryptography Conference

Perspectives on the transition to PQC in the financial sector

The race towards post-quantum cryptography has started. While several organizations in the finance sector are taking steps to prepare for the transition, the focus seems to still be building up. This session will provide an update on the status of the transition to PQC in the financial sector, including relevant regulations such as DORA, PCI-DSS, CNSA2, and NIST IR 8547, and how these regulations collectively drive the need for improved cryptography management; the ongoing collaboration in initiatives like the Europol Quantum Safe Financial Forum or the FS-ISAC PQC Workgroup; and the Santander Quantum Threat Program.

Jaime Gómez García Head of Quantum at Banco Santander and Chair of the Quantum Safe Financial Forum

KEŸFACTOR

January 15 and 16, 2025 - Austin, TX (US) | Online

PKI Consortium Inc. is registered as a 501(c)(6) non-profit entity ("business league") under Utah law (10462204-0140) | pkic.org

Santander Block chain

Perspectives on the transition to PQC in the financial sector

Jaime Gómez García PQC Conference - Jan. 16th, 2025

G7 Workshop hosted by Banca d'Italia

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\bigcirc \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ \bigcirc$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

Workshop Building a quantum safe financial system: what role for authorities and for the private sector?

Rome, 24-25 September 2024

12 financial institutions (Banca d'Italia, Swift, Bundesbank, JP Morgan, Banque de France, Santander, BIS, Bank of Canada, Intesa Sanpaolo, US Treasury, Reserve Bank of Australia and World Bank Group), among many other specialists.

Block)chain

Key statements from Alessandra Perrazelli (Deputy Governor of Banca d'Italia):

- Main obstacles slowing the transition:
 - Bigh short-term risk mitigation costs
 - Lack of consensus on migration approaches and technical standards
 - Fragmented regulatory and capability frameworks across jurisdictions
 - Key requirements for a common roadmap:
 - In the second second
 - Standardize risk mitigation strategies across jurisdictions
 - Include input from financial industry players and tech providers
 - Ensure interoperability and service quality throughout the transition
 - Maintain strong international coordination

Despite growing awareness, a clear, unified action plan to ensure a smooth and secure quantum transition is still lacking.

Block>chain

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle \\ \langle \rangle \\ \langle \rangle$

 $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

〈〉 〈〉

CHANGE MANAGEMENT AND APPLICATIONS IN PRACTICE

COMPARENT CONTINUES AND ADDRESS AND ADDRES

CULANTUM TECHNOLOGY FOCUS ON RISKS, CRYPTOGRAPHY STANDARDS AND DATA SECURITY

2024 IIF QUANTUM BOOTCAMP

AGENDA

EPAA Workgroup on Quantum-Safe Cryptography Block>chain

FOR RELEASE - 25 April 2024

Emerging Payments Association Asia announces new work group during Money20/20 Asia to encourage the adoption of quantum-safe cryptography in the banking industry

New work group will support a roadmap for quantum-safe cryptography adoption across the payments and banking landscape

Sydney, Australia, April 25, 2024 -- The Emerging Payments Association Asia (EPAA) today announced the formation of a Work Group on Quantum-Safe Cryptography (WG-QSC) across ASEAN, with IBM, HSBC, AP+ and PayPal as founding members.

The Work Group was formally launched at Money20/20 Asia in Bangkok, Thailand, during the session "Cracking the Code—*The Race to Quantum-Safe*", with EPAA's Advisory Board member Mary Ann Francis, IBM's Fellow & VP Ray Harishankar, and EPAA's CEO Camilla Bullock.

FS-ISAC

October 2024

Building Cryptographic Agility in the Financial Sector

Effective, Efficient Change in a Post Quantum World

Cryptographic Agility is a measure of an organization's ability to adapt cryptographic solutions or algorithms (including their parameters and keys) quickly and efficiently in response to developments in cryptanalysis, emerging threats, technological advances, and/or vulnerabilities.

It is also a design principle for implementing, updating, replacing, running, and adapting cryptography and related business processes and policies with no significant architectural changes, minimal disruption to business operations, and short transition time.

- Design principle
- Adapt to ANY future threats to cryptography
- Minimal disruption to business

Good old exit plans, no more set and forget in cryptography

Europol Quantum Safe Financial Forum

EURSPOL

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

く) く)

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

Block

Other position statements in 2024

WØRLD

ECONOMIC FORUM

In collaboration with Financial Conduct Authority (FCA)

 $\langle \rangle$

 \bigcirc

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

Quantum Security for the Financial Sector: Informing Global **Regulatory Approaches**

WHITE PAPER JANUARY 2024

Santander

Monetary Authority of Singapore 10 Shenton Way MAS Building Singapore 079117 Telephone: (65) 6225-5577 Circular No. MAS/TCRS/2024/01 20 February 2024 To Chief Executive Officers of All Financial Institutions Dear Sir / Madam

ADVISORY ON ADDRESSING THE CYBERSECURITY RISKS ASSOCIATED WITH QUANTUM

Quantum computers that harness the laws of guantum mechanics have the potential to solve certain mathematical problems exponentially faster than traditional computers to bring substantive transformation to a diverse range of industries. At the same time, their potential to break some of the commonly used encryption and digital signature algorithms poses a major cybersecurity concern. The security of financial transactions and sensitive data that financial institutions ("FIs") process could be at risk with the advent of these cryptographically relevant quantum computers ("CRQCs")1.

Cybersecurity Security Technology and Risk Strategy

Quantum Computing: The Urgent Need to **Transition to Quantum-Resistant** Cryptography

 Andrew Kennedy
 Opecember 30, 2024
 Opecember 30, 202
 Op Print Listen Here

The advent of practical quantum computing poses a significant risk to data security, especially for industries like banking and finance, which rely heavily on cryptography to protect sensitive information. If quantum computers become capable of running certain algorithms at scale, they could break current encryption methods, exposing sensitive data and undermining secure communications. This is not a distant threatthe time to act is now.

Ignoring this imminent shift could lead to data breaches, loss of customer trust and severe financial repercussions. Recognizing this threat, the federal government has set 2035 as the deadline for federal agencies to be quantum-ready. Banks and financial institutions must proactively transition to quantumresistant cryptographic algorithms to ensure the security of their systems in the face of emerging quantum threats.

Why This Matters to Cryptography

Quantum computers have the potential to outperform classical systems in factoring large numbers, a problem central to many cryptographic systems

Cryptographic security: Critical to Europe's digital sovereignty

SUMMARY

By the 2030s, quantum computers might compromise traditional cryptography, putting digital infrastructure at high risk in the European Union (EU) and around the world. Specifically, it is expected that quantum computers' unique capabilities will allow them to solve complex mathematical problems, such as breaking the traditional cryptographic systems used universally. The confidentiality, integrity and authenticity of sensitive data - including health, financial, security and defence information - will be exposed to threats from any actor possessing a sufficiently powerful quantum computer. There is a pressing need for the EU to start preparing its digital assets to face this risk

Post-quantum cryptography (which uses classical computer properties) and quantum cryptography (which uses guantum mechanical properties) are the two types of critical technology able to protect digital infrastructure from quantum computer attacks. Robust post-quantum cryptography algorithms have been identified, but swift and efficient implementation is crucial before malicious actors exploit the power of quantum computers. Experts stress the need for quantum preparedness to be put in place now, with some of them even warning of a 'quantum cybersecurity Armageddon'.

Several countries are adopting strategies to address post-quantum cryptography. The EU is working with Member States and the United States to speed up the transition to post-quantum cryptography, and is also exploring long-term quantum cryptography initiatives.

IN THIS BRIEFING

- · What is cryptography and how is it used? · What is dismantling the security of traditional
- cryptography? Quantum and post-quantum cryptography to
- the rescue What the EU is doing
- · International perspectives on the quantum transition
 - · Challenges and potential action

EPRS | European Parliamentary Research Service

Author: Stefano De Luca with Tristan Marcelin; Graphics: Samy Chahri Members' Research Service PE 766.237 - November 2024

I understand the threat, but I can't engage the organization

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

AND DESCRIPTION OF THE OWNER OWNE

We still fight with obsolete software, let alone cryptography

> We have little expertise on cryptography

Image generated with Bing

Augmented Mosca's theorem

Cybersecurity Forecast 2025

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

〈〉 〈〉

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

Google Cloud

Preparing for an Age of Post-Quantum Cryptography

Many organizations in 2025 will be starting their journeys towards adopting new post-quantum cryptography standards finalized by the National Institute of Standards and Technology (NIST) in 2024. The latest guidance from NIST on quantum-safe encryption/key transport and cryptographic signing is designed to help mitigate attacks by adversaries with large-scale quantum computers. These attacks could potentially break encryption, and ultimately compromise sensitive data.

Although quantum threats likely won't have a widespread impact next year, organizations in 2025 will need to start understanding the risks posed by quantum computing, planning their transitions to quantum-resistant solutions, inventorying where they are using cryptography, regularly rotating encryption keys, and generally staying informed of quantum developments using threat intelligence and other guidance. Understand

- Plan
- Inventory
- Rotate keys
- Stay informed

https://cloud.google.com/blog/topics/threat-intelligence/cybersecurity-forecast-2025

Block>chain

Block>chain

Projected economic losses from a systemically relevant cyber attack enabled by quantum computing¹

10th-90th percentiles

¹ The expected losses are derived by multiplying the magnitude of potential losses with the probability of quantum computing breaching RSA-2048 encryption within 24 hours over various time horizons. The estimation of loss size is based on a survey question directed to central banks, asking, "In your opinion, what is the maximum loss in % of annual GDP that a systemically relevant cyber-attack on traditional financial institutions could cause?" This query was posed to a sample comprising seven advanced economies (AEs) and 11 emerging market economies (EMEs). The probability estimates are obtained from a professional survey of field experts. The x-axis represents the projection horizon in years.

Sources: Survey on Doerr et al (2022); Mosca and Piani (2023)

BIS Papers No 149

Quantum computing and the financial system: opportunities and risks

by Raphael Auer, Angela Dupont, Leonardo Gambacorta, Joon Suk Park, Koji Takahashi, and Andras Valko

Monetary and Economic Department

October 2024

JEL classification: C19, C63, C8, M15, G1, G17

Keywords: quantum computing, quantum algorithm, quantum cryptography, quantum-resilient cryptography, artificial intelligence, computational finance, Project Leap.

Block)chain

July 2024

REPORT ON POST-QUANTUM CRYPTOGRAPHY

as required by the Quantum Computing Cybersecurity Preparedness Act, Public Law No: 117-260 Section 2: Current estimate of the amount of funding needed by agencies to secure information technology

OMB and ONCD, in collaboration with CISA and NIST, have worked with Federal agencies to take specific steps to prepare for the transition to PQC. In particular, this has involved three key activities:

- 1. Developing an initial inventory of cryptographic systems present on agency information systems (other than national security systems (NSS));
- 2. Developing cost estimates for the transition; and
- 3. Developing prioritization criteria for the transition.

Agencies deliver an annual inventory to OMB and ONCD of quantum-vulnerable cryptography on prioritized systems and the estimates of the cost for migrating those systems. Based on those cost estimates, ONCD projects that that the total government-wide cost required to perform a migration of prioritized information systems to PQC between 2025 and 2035 will be approximately \$7.1 billion in 2024 dollars. As directed by NSM-10, the Department of Defense, the Office of the Director of National Intelligence, and the National Manager for NSS are developing separate funding estimates for the migration of NSS to PQC.

This initial projection reflects a high, but expected, level of uncertainty associated with the inventory and transition to PQC. Agencies are required to update their cost estimates annually to allow for adjustments as they gain familiarity with the inventories, costing methodologies, and the transition process. Initial cost estimates represent a rough order of magnitude rather than precise calculations.

In developing their cost estimates, agencies accounted for the conditions and qualities of the specific host system and networks. In certain cases, agencies were aware of systems that could not accommodate new cryptographic systems. As mentioned previously in this report, such systems could include those whose cryptographic algorithms were hardwired into the hardware or firmware, or those that lack the capacity to accept replacement cryptographic algorithms. The cost to replace those systems constitutes a significant portion of the overall estimate.

Estimated to be 1% of the yearly IT budget over 10 years

https://www.whitehouse.gov/wp-content/uploads/2024/07/REF_PQC-Report_FINAL_Send.pdf

PRESENTED TO

Senate Committee on Homeland Security and Governmental Affairs House Committee on Oversight and Accountability

Active regulations

PCI DSS

January 17th, 2025

April 1st, 2025

Santander

https://www.esma.europa.eu/sites/default/files/2024-01/JC 2023 86 - Final report on draft RTS on ICT Risk Management Framework and on simplified ICT Risk Management Framework.pdf https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

DORA requirements – Art. 6

The draft <u>Regulatory Technical Standard for ICT risk management</u> contains a whole section for encryption and cryptography.

	Requirement	Actions
<u>SECTION IV</u>	Requirement	
Article 6 Encryption and cryptographic controls 1. As part of their ICT security policies, financial entities shall develop, document and implement a policy on encryption and cryptographic controls, with a view to preserve the availability, authenticity, integrity and confidentiality of data. 2. The policy on encryption and cryptographic controls shall be designed on the basis of	Financial entities shall develop, document and implement a policy on encryption and cryptographic controls. The policy shall be designed on the basis of the results of approved data classification and risk assessment. It shall include rules defining when to encrypt data and for key lifecycle management. (Art. 6.1 and 2)	 Organizations must verify and update their cryptography and data security policies
 the results of approved data classification and ICT risk assessment and shall include all the following elements: (a) rules for the encryption of data at rest and in transit; (b) rules for the encryption of data in use, where necessary. Where encryption of data in use is not possible, financial entities shall process data in use in a separated and protected 	Financial entities shall include in the policy on encryption and cryptographic controls criteria to select cryptographic techniques and use practices taking into account leading practices and standards. Where reliable techniques cannot be met, it shall adopt mitigation and monitoring measures to ensure resiliency against cyber threats. (Art. 6.3)	 The cryptography policies must specify valid algorithms based on standards. Non-compliant use cases must be mitigated. This requires use case and technical inventories
	Financial entities shall include provisions to update or change the cryptographic technology to ensure they remain resilient against cyber threats. Where the financial entity cannot update or change the cryptographic technology, it shall adopt mitigation and monitoring measures to ensure they remain resilient against cyber threats. (Art. 6.4)	• Crypto-agility
environment or take other equivalent measures that ensure the confidentiality, integrity,	Financial entities shall include a requirement in the policy controls to record the adoption of mitigation and monitoring measures adopted in accordance with paragraphs 3 and 4 and to provide a reasoned explanation for doing so. (Art. 6.5)	Monitoring of cryptography use cases and algorithms

🜢 Santander

Enforcement date: January 17th, 2025

 $\langle \rangle$

 $\langle \rangle$

DORA requirements – Art. 7

The draft <u>Regulatory Technical Standard for ICT risk management</u> contains a whole section for encryption and cryptography.

Article 7	Requirement	Actions
 Cryptographic key management Financial entities shall lay out in the provisions on cryptographic key management referred to in Article 6(2) point (d), the requirements for managing cryptographic keys through their whole lifecycle, including generating, renewing, storing, backing up, archiving, retrieving, transmitting, retiring, revoking and destroying keys. Financial entities shall identify and implement controls to protect cryptographic keys through their whole lifecycle against loss, unauthorised access, disclosure and modification. 	Financial entities shall define the requirements for managing cryptographic keys through their whole lifecycle, including generating, renewing, storing, backing up, archiving, retrieving, transmitting, retiring, revoking and destroying keys. (Art. 7.1)	Policies must include key lifecycle management
The controls shall be designed taking into account the results of the approved data classification and the ICT risk assessment processes. 50	Financial entities shall implement controls to protect cryptographic keys through their whole lifecycle against loss, unauthorized access, disclosure and modification, and implement methods to replace the cryptographic keys in the case of lost, compromised or damaged keys. (Art. 7.2 and 3)	 Key lifecycle must be monitored and ready to tackle security events
	Financial entities shall create and maintain a register for all certificates and certificate storing devices for at least ICT assets supporting critical or important functions. (Art. 7.4)	Certificates and certificate storing devices inventory
European Banking Authority Company Service of the European Supervisory Authorities	Certificates must be renewed before expiration. (Art. 7.5)	Certificate Lifecycle Management and Monitoring

3. Financial entities shall develop and implement methods to replace the cryptographic keys in the case of lost, compromised or damaged keys.

4. Financial entities shall create and maintain a register for all certificates and certificatestoring devices for at least ICT assets supporting critical or important functions. The register shall be kept up-to-date.

5. Financial entities shall ensure the prompt renewal of certificates in advance of their

Santander

Enforcement date: January 17th, 2025

Block>chain

PCI Standards Council			Requirement	Actions			
Requirements and T	Testing Procedures	Guidance	Strong cryptography requested throughout	Organizations must verify and update			
Defined Approach Requirements	Defined Approach Testing Procedures	Purpose Protocols and encryption strengths may quickly	the standard	their cryptography and data security			
 12.3.3 Cryptographic cipher suites and protocols in use are documented and reviewed at least once every 12 months, including at least the following: An up-to-date inventory of all cryptographic cipher suites and protocols in use, including purpose and where used. Active monitoring of industry trends regarding continued viability of all cryptographic cipher suites and protocols in use. A documented strategy to respond to anticipated changes in cryptographic vulnerabilities. 	12.3.3 Examine documentation for cryptographic suites and protocols in use and interview personnel to verify the documentation and review is in accordance with all elements specified in this requirement.	change or be deprecated due to identification of vulnerabilities or design flaws. In order to support current and future data security needs, entities need to know where cryptography is used and understand how they would be able to respond rapidly to changes impacting the strength of their cryptographic implementations. Good Practice Cryptographic agility is important to ensure an alternative to the original encryption method or cryptographic primitive is available, with plans to upgrade to the alternative without significant change to system infrastructure. For example, if	Methods to mitigate attacks on cryptography usage, including attempts to exploit weak, insecure, or inappropriate cryptographic implementations, algorithms, cipher suites, or modes of operation. (Req. 6.2.4)	 Organizations must include cryptography controls in their QA and security audit processes 			
Customized Approach Objective The entity is able to respond quickly to any vulnerabilities in cryptographic protocols or algorithms, where those vulnerabilities affect protection of cardholder data. Applicability Notes The requirement applies to all cryptographic suites and protocols used to meet PCI DSS requirements. This requirement is a best practice until 31 March 2025, after which it will be required and must be fully considered during a PCI DSS assessment.	Customized Approach Objective The entity is able to respond quickly to any vulnerabilities in cryptographic protocols or algorithms, where those vulnerabilities affect protection of cardholder data. Applicability Notes The requirement applies to all cryptographic suites and protocols used to meet PCI DSS requirements. This requirement is a best practice until 31 March 2025, after which it will be required and must be fully considered during a PCI DSS assessment.		 Up-to-date inventory of all cryptographic cipher suites and protocols in use Active monitoring of industry trends regarding continued viability of all cryptographic A documented strategy to respond to anticipated changes in cryptographic vulnerabilities (Req. 12.3.3) 	 Cryptographic inventories Crypto-agility 			
Payment Card Industry Data Security Standard: Requir © 2006 - 2022 PCI Security Standards Council, LLC. A	ements and Testing Procedures, v4.0 Il rights reserved.	March 2022 Page 267					

Santander

PCI-DSS requirements

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

Enforcement date: April 1st 2025

Block>chain

End of Life for Vulnerable Cryptography

NIST Internal Report NIST IR 8547 ipd

Transition to Post-Quantum Cryptography Standards

Initial Public Draft

Dustin Moody Ray Perlner Andrew Regenscheid Angela Robinson David Cooper

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8547.ipd

Santander

Digital Signature Algorithm Family	Parameters	Transition
	112 hits of security strength	Deprecated after 2030
ECDSA [FIPS186]	112 bits of security strength	Disallowed after 2035
[≥ 128 bits of security strength	Disallowed after 2035
EdDSA [FIPS186]	≥ 128 bits of security strength	Disallowed after 2035
	112 hits of socurity strongth	Deprecated after 2030
RSA [FIPS186]	112 bits of security strength	Disallowed after 2035
	≥ 128 bits of security strength	Disallowed after 2035

4.1.2. Key Establishment

Table 4 lists currently approved quantum-vulnerable key-establishment.

Table 4: Quantum-vulnerable key-establishment schemes

Key Establishment Scheme	Parameters	Transition
inite Field	112 hits of security strength	Deprecated after 2030
DH and MQV	112 bits of security strength	Disallowed after 2035
SP80056A]	≥ 128 bits of security strength	Disallowed after 2035
Elliptic Curve	112 bits of converts strength	Deprecated after 2030
DH and MQC	112 bits of security strength	Disallowed after 2035
SP80056A]	≥ 128 bits of security strength	Disallowed after 2035
	112 hits of conveits strongth	Deprecated after 2030
RSA (SP80056B)	112 bits of security strength	Disallowed after 2035
5. 666565]	≥ 128 bits of security strength	Disallowed after 2035

Table 2: Quantum-vulnerable digital signature algorithms

Roadmap to Quantum-Readiness

Education and

Program definition

Discovery

Plan

Execute

Our **long-term timeline** considers three main waves:

- Wave 1 Foundational activities and those without external dependencies (No-Regret Actions)
- Wave 2 Transition to PQC
- Wave 3 Clean-up

2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Wave 1: Foundational and no external dependencies														
Wave 2: Transition to PQC														
Waye 3: Clean-up										7				

Wave 1: Foundational and No-Dependencies Activities

Main goals "No-Regret Actions"

The talent and
practices
challenge

The inventory

and scattered

knowledge

challenge

Update cryptographic capabilities

- Identify and upskill global cryptographic talent
- Establish a mature cryptography management framework. Update cryptography-related policies
- Understand future implications of PQC

- Understand our cryptographic landscape

- Identify and inventory cryptographic use cases and assets
- Assess existing practices, stakeholders and associated roadmaps
- Upgrade current practices to a homogeneous and mature standard

Prepare the TO-BE

- Identify best solutions and expertise for the different use cases
- Identify gaps vs expected future features and dependencies. Focus on legacies needing refactor
- Launch consolidation and modernization projects

2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Wave 1: Foundational and no external dependencies							1							

 $\langle \rangle$

Wave 2: Transition to PQC

Main goals "Adapting to the new standards"

Priority-based, gradual transition Timeline Perform risk, dependency and impact assessments for the different use cases based on risk Design gradual transition plans with coexistence of classical and PQ cryptography (Hybrid) drivers Establish a priority-based execution roadmap Implement crypto-agility Protect the Implement cryptography usage monitorization and control future Introduce automation features in cryptography usage Establish exit plans while transitioning to PQC Demonstrate a strong cybersecurity cryptographic leadership Lead the Have a clear and open transition roadmap challenge **Execute the transition in a simple and global manner** Make cryptography part of our cybersecurity excellence

2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Wave 2: Transition to PQC								1			7			

ð Santander

Wave 3: Clean-up

Main goals "Decommissioning obsolete cryptography"

Ensure completeness	 Understand legacy use cases of classical cryptography Identify remaining classical cryptography Assess dependencies not discovered in previous waves
Enter PQC only	 Decommission classical cryptography Eliminate classical cryptography configurations Mitigate or refactor remaining dependencies

Make crypto-agility practical

- Update our cryptography management framework
- Exercise practical crypto-agility to ensure we are ready for future challenges

Santander

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

Block>chain

TLS Evolution

antander

Protocol Support In Internet

TLS compliance model

E

- For TLS version compliance, number of TLS services exposing:
 - *Compliant* configurations, all of them *Safe*.
 - *Non-compliant* configurations, which can be:
 - Safe but obsolete: If they support TLSv1.2 only.
 - *Forbidden*: If they support any version lower than TLSv1.2.
- For **CIPHERSUITE COMPLIANCE**, number of TLS services exposing:
 - *Compliant* configurations, all of them *Safe*.
 - *Non-compliant* configurations, which can be:
 - Safe: All configured ciphersuites are Compliant and Safe but the configuration does not follow the format specified in our recommendation.
 - *Weak*: If they support non-compliant, but not forbidden ciphersuites.
 - *Forbidden*: If they support any forbidden ciphersuite.

Visibility of 9000 Apache instances globally already by adapting existing tools!

Quantum-safe Document Signatures

Current

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\stackrel{\lor}{\diamondsuit}$

 $\langle \rangle$

Quantum-Safe Signatures

Classical signature

Santander

Classical signature	PostQuantum Long-Term Validation	Blockchain notarization	

Provides a quantum-safe, independent and immutable proof of existence of the signatures when the algorithms were secure

Opensource Cryptography Bill of Materials

	Santandersecurityresearch / cryptobom-forge							
<> Cod	le 💿 Issues 2 🕅 F	Pull requests 2 🖓 Discussions	Actions [🗄 Projects 🕕 S				
🍐 c	ryptobom-forge	blic		⊙ Wate				
ę	dev - 🌮 2 branches	> 2 tags	Go t	o file Code 🗸				
	emilejq Add unit tests for p	arser !tests 🗸	sbeeedf 3 days ag	o 🕲 18 commits				
	.github/workflows	Create release.yml		2 weeks ago				
	cbom	Transform matched algorithm to u	ppercase !minor	3 days ago				
	tests	Add unit tests for parser !tests		3 days ago				
Ľ	.gitchangelog.rc	Add ignore pattern for tests to git	changelog config	3 days ago				
۵	.gitignore	Add .gitignore		2 weeks ago				
۵	CHANGELOG.rst	Update changelog for release 1.0.	I lignore	last week				
۵	CODE_OF_CONDUCT.md	moved from PQC repo to final CSF	R home. Edited RE	2 weeks ago				
0	LICENSE	moved from PQC repo to final CSF	R home. Edited RE	2 weeks ago				
۵	MANIFEST.in	moved from PQC repo to final CSF	R home. Edited RE	2 weeks ago				
۵	README.md	added community call		2 weeks ago				
Ľ	SECURITY.md	Updated links & refs for changed	repo name	2 weeks ago				
۵	pyproject.toml	Updated links & refs for changed	repo name	2 weeks ago				
Ľ	requirements.txt	moved from PQC repo to final CSF	R home. Edited RE	2 weeks ago				

Cryptobom Forge Tool: Generating Comprehensive CBOMs from CodeQL Outputs

A BECURITY RE

	il requests 🤤 Discussions 🕑 Actions 🛛	∃ Projects U S	ecurity 🗠 Insights
양 main 👻 양 🛇	Q Go to file	<> Code -	About
🍘 unprovable Update ubuntu-setu	p.sh for fixing some in 🗸 dd38eac · yesterday	🕓 88 Commits	Network Cryptography Monitor - eBPF, written in python
github/ISSUE_TEMPLATE	Update issue templates	5 months ago	python cryptography ebpf
Cryptomon	Added validation for char encoding on	3 months ago	🛄 Readme
🖿 fapi	fixed incompatability between pydantic	4 months ago	화 GPL-3.0 license
🖿 img	fixed up bits, added sbom	6 months ago	 Activity
🗋 .gitignore	updated licenses	6 months ago	 Custom properties 27 stars 2 watching 2 forks
	Create LICENSE	7 months ago	
README.md	updated README for pcap support	4 months ago	
SECURITY.md	Create SECURITY.md	6 months ago	Report repository
🗅 api.py	updated licenses	6 months ago	Releases 3
🗅 bom.json	fixed issue with bson	6 months ago	© 0.6.1 (Latest)
Config-secrets.sh	Update config-secrets.sh	7 months ago	+ 2 releases
Create-service.sh	updated README	7 months ago	
C cryptomon.py	minor fix - remove default from testing	4 months ago	Packages
🗋 parse-pcap.sh	pcap processing - quick MVP	4 months ago	No packages published
🗋 requirements.txt	fixed incompatability between pydantic	4 months ago	Contributors 2
start_cryptomon.sh	fixed incompatability between pydantic	4 months ago	unprovable Mark C.
🗋 ubuntu-setup.sh	Update ubuntu-setup.sh for fixing som	yesterday	danielcuthbert Daniel Cuthbert
C README S GPL-3.0 license	極 Security	:=	Languages

NB - This code is pre-production and is intended for demonstration purposes.

 $\langle \rangle$

 $\langle \rangle$

Certificate Inventory in CMDB

Languages

Shell 100.0%

Sign up

Star 2

Product ~ Solutions ~ Res	ources \vee Open Source 🗸 Enterprise	 Pricing 	Q Sign in Sign u
🛱 Santandersecurityresearch /	cryptoinventory.datamodel Publ	ic	⚠ Notifications 양 Fork 0 ☆ Star 2
<> Code 🕑 Issues 2 11 Pull rec	quests 🕑 Actions 🖽 Projects 🔃 S	iecurity 🗠 Insig	jhts
🔋 main 👻 🐉 🛇	Q Go to file	<> Code -	About
apri-san Merge pull request #11 fro	om Santandersecuri 🚥 3dc0e8e · last month	🕓 51 Commits	A Data Model Poc for Crypto Inventory for the Europol Quantum Safe Financial
for-ibm-cbom-1.4	Moved version 1.4 files to new location	3 months ago	Forum (QSFF)
🗋 .gitignore	Add .gitignore	3 months ago	
README.md	Readme update	last month	
🗋 bom-1.6.schema.json	Welcome CycloneDX 1.6!	3 months ago	
Certificate-object-1.json	added first commit files and README.md	4 months ago	
certificate-object-cyclonedx-1.6	Recover the original states including re	2 months ago	
certificate-object-cyclonedx-1.6	Recover the original states including re	2 months ago	
data-model-for-certificates-v.1.0	Data model update	last month	
isf-0.82.schema-cyclonedx.json	Welcome CycloneDX 1.6!	3 months ago	Dackages
santander-cryptographic-proper	Recover the original states including re	2 months ago	No packages published
spdx.schema-cyclonedx.json	Welcome CycloneDX 1.6!	3 months ago	
🗋 validate.sh	Santander schema compatible with Cyc	3 months ago	Contributors 2
			capri-san Capri
			danielcuthbert Daniel Cuthbert

Cryptoinventory Data Model PoC

 $\langle \rangle$ $\langle \rangle$

 \bigcirc

 $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

 $\langle \rangle$ $\langle \rangle$ $\langle \rangle$

Currently using CycloneDX 1.6 schema CycloneDX 1.6. This repository has also schemas and objects valid for IBM CBOM (bom-1.4-cbom-1.0.schema.json) for documentation purposes.

Santander

https://github.com/Santandersecurityresearch/cryptoinventory.datamodel

Take aways

Awareness is growing and the finance sector is taking action

independent from the evolution of quantum computing

\$ httpd --output-cbom

Wishlist

 $\langle \rangle$

 HKEY_LOCAL_MACHINE\...\IISADMIN\...\cbom

Software applications to provide their CBOMs

Standard support of cryptography in CMDBs

Multivendor, multitenant, enterprise scale Key Management Systems

Block) chain

iGracias!

Jaime Gómez García Head of Quantum, Banco Santander | Chair of the Quantum...

