ENTRUST m

@ PKI

Consortium




Radboud University ?%9
ol

e

Code-based cryptography

Simona Samardjiska
Digital Security Group, Radboud University

simonas@cs.ru.nl

Post-Quantum Cryptography Conference, November 07, 2023

1/30


simonas@cs.ru.nl

What is
code-based cryptography?



Code-based cryptography - an area of post-quantum cryptography

Isogeny based cryptosystems —

KEMSs/NIKEs/signatures Multivariate Quadratic cryptosystems — mainly signatures
(Finding isogenies on (Polynomial System Solving —PoSSo,
supersingular elliptic curves) \ for quadratic polynomials - MQ problem)
Hard
Mathematical —— Code-based cryptosystems — mainly encryption/KEMs
Problems (decoding random linear codes, equivalence)
Hash-based signaturqs (only) Lattice-based cryptosystems — signatures/encryption/KEMs
(only secure hash function needed) (many different hard problems — SIS, SVP, LWE)

iC1S | Digital Security
Radboud University




Yet—not new at all!

Rainbow
Merkle signature
McEligce signature HFE scheme
ent(]:ryption adiene construction
scheme

1986

Lamport Niederreiter uov Isogeny based
signatures encryption signature DH key exchange
scheme scheme

iCIS | Digital Security
Radboud University




Yet—not new at all!

Rainbow
Merkle signature
.McEliece signature scheme
Sheryption scheme HFE

construction
scheme

1989 1996

Lamport uov Isogeny based
signatures encrvntion signature DH key exchange
scheme scheme

® McEliece cryptosystem is as old as RSA! ...

iCIS | Digital Security
Radboud University




Yet—not new at all!

Rainbow
Merkle signature
.McEliece signature scheme
Sheryption scheme HFE

construction
scheme

1989 1996

Lamport uov Isogeny based
signatures encrvntion signature DH key exchange
scheme scheme

® McEliece cryptosystem is as old as RSA! ...
® But, huge public key =~ 70KB for 80 bits security

iCIS | Digital Security
Radboud University




Yet—not new at all!

Rainbow
Merkle signature
.McEliece signature scheme
Sheryption scheme HFE

construction
scheme

1989 1996

Lamport uov Isogeny based
signatures encrvntion signature DH key exchange
scheme scheme

® McEliece cryptosystem is as old as RSA! ...
® But, huge public key =~ 70KB for 80 bits security

® Classic McEliece ~ 260KB for NIST level 1 security

iCIS | Digital Security
Radboud University




Basic principle — borrowed from noisy channel communication

A

L-_ Channel .

)}/
Ry _/_.'._ i
$5 . o | =c+e
X <«—— Decoder y

Noisy channels introduce errors to transmitted digital messages

® satellite to earth communication, mobile phone data, humans typing on keyboard, ...

5/30



Basic principle — borrowed from noisy channel communication

A

L-_ Channel .

4 )=
e A _/_.'._ =
by 4—Decoder4—[y_c+e

Noisy channels introduce errors to transmitted digital messages

® satellite to earth communication, mobile phone data, humans typing on keyboard, ...

Systems need a mechanism for correction of errors — They use error correcting codes

5/30



Basic principle — borrowed from noisy channel communication

A

L-_ Channel .

)}/
oy s
§5 | =c+e
X <«—— Decoder y

Noisy channels introduce errors to transmitted digital messages

® satellite to earth communication, mobile phone data, humans typing on keyboard, ...
Systems need a mechanism for correction of errors — They use error correcting codes

® Sender encodes the message by adding some redundancy

5/30



Basic principle — borrowed from noisy channel communication

A

L-_ Channel .

4 )=
e A _/_.'._ S,
by 4—Decoder4—[y_c+e

Noisy channels introduce errors to transmitted digital messages

® satellite to earth communication, mobile phone data, humans typing on keyboard, ...
Systems need a mechanism for correction of errors — They use error correcting codes

® Sender encodes the message by adding some redundancy

® Receiver decodes the message to remove the error

5/30



How to use it in cryptography?

% X=X "'xk—bEncoder—l C=0¢Cy'Cy

el ...en —_

)
I

Add intentional noise

y=c+e

Y, X <+— Decoder
[

6/30



How to use it in cryptography?

% X=Xy "'xk—bEncoder—l C=0Cy*Cy

el=e; e ——»

Add intentional noise

X <+— Decoder yE e

® Sender encodes the message by adding some redundancy + introduces error (intentional noise)

® Receiver decodes the message to remove the error with knowledge of efficient decoding method

® For some codes, we know how to correct errors efficiently, bot not for all!

6/30



How to use it in cryptography?

% X|= Xy *** X} — Encoder

Tczcl ...Cn

el=e; e ——»

Add intentional noise

X <+— Decoder

y=c+e

® Sender encodes the message by adding some

® Receiver decodes the message to remove the

redundancy + introduces error (intentional noise)

error with knowledge of efficient decoding method

® For some codes, we know how to correct errors efficiently, bot not for all!

® Decoding random codes is a hard problem =- we can use codes in cryptography!

6/30



How to use it in cryptography?

% X|= Xy *** X} — Encoder

Tczcl ...Cn

el=e; e ——»

Add intentional noise

X <+— Decoder

y=c+e

® Sender encodes the message by adding some

® Receiver decodes the message to remove the

redundancy + introduces error (intentional noise)

error with knowledge of efficient decoding method

® For some codes, we know how to correct errors efficiently, bot not for all!

® Decoding random codes is a hard problem =- we can use codes in cryptography!

6/30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of 5 of dimension k

7/30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of 5 of dimension k

® Defined by basis matrix — k X n generator matrix G

C={c|c=mG,mec F5}

7/30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of 5 of dimension k

® Defined by basis matrix — k X n generator matrix G
C={c|c=mG,mec F5}
® or by kernel matrix — (n — k) x n Parity-Check matrix H

C={c|cH' =0}

7/30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of 5 of dimension k

® Defined by basis matrix — k X n generator matrix G
C={c|c=mG,mec F5}
® or by kernel matrix — (n — k) x n Parity-Check matrix H
C={c|cH' =0}

e GH' =0

7/30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of 5 of dimension k

® Defined by basis matrix — k X n generator matrix G
C={c|c=mG,mec F5}
® or by kernel matrix — (n — k) x n Parity-Check matrix H
C={c|cH' =0}

*GH" =0
e Systematic form of G = [lkx|T] = H = [T |[l(-_k)x(o—k)] (store only the redundant part T)

7/30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of 5 of dimension k

® Defined by basis matrix — k X n generator matrix G
C={c|c=mG,mec F5}
® or by kernel matrix — (n — k) x n Parity-Check matrix H
C={c|cH' =0}

*GH" =0
e Systematic form of G = [lkx|T] = H = [T |[l(-_k)x(o—k)] (store only the redundant part T)

® Elements of C are called codewords — notation ci, ¢y, . ..

7/30



Linear codes + Hamming distance basics

® Hamming weight of ¢ — number of non-zero coordinates of ¢ - notation hw(c)

8/30



Linear codes + Hamming distance basics

® Hamming weight of ¢ — number of non-zero coordinates of ¢ - notation hw(c)

8/30



Linear codes + Hamming distance basics

® Hamming weight of ¢ — number of non-zero coordinates of ¢ - notation hw(c)

® Minimum weight d(C) = minco{hw(c)}

4 .
. =
Minimum distance of
the code C
/ .
\
L]

8/30



Linear codes + Hamming distance basics

® Hamming weight of ¢ — number of non-zero coordinates of ¢ - notation hw(c)
® Minimum weight d(C) = minco{hw(c)}
® [f d(C) > 2t - the code can correct t errors (t bit-flips during transmission)

4 .
] . Hadlus i'.n;.lr ur;i.que
decoding of C

/2

8/30



Linear codes basics

Encoding of messages:

c=mG
Transmission errors introduced:

y=c+e
Decoding: A procedure Decode():

Find ¢’ s.t. hw(c' —y) <t

9/30



Linear codes basics

Encoding of messages:

c=mG
Transmission errors introduced:

y=c+e
Decoding: A procedure Decode():

Find ¢’ s.t. hw(c' —y) <t

Another (equivalent) way of looking at it:

Syndrome Decoding:
Given syndrome s = yH, find e of weight at most t such that s = eH "

9/30



Linear codes basics

Encoding of messages:

c=mG
Transmission errors introduced:

y=c+e
Decoding: A procedure Decode():

Find ¢’ s.t. hw(c' —y) <t

Another (equivalent) way of looking at it:

Syndrome Decoding:
Given syndrome s = yH, find e of weight at most t such that s = eH "

® Syndrome decoding, equivalently, decoding of random codes is NP-hard

9/30



McEliece and Niederreiter
cryptosystems



Linear codes for cryptography

® |dea for cryptographic use: Scramble efficiently decodable codes to hide structure

10/30



Linear codes for cryptography

® |dea for cryptographic use: Scramble efficiently decodable codes to hide structure

® |egitimate user has trapdoor — private key + efficient decoder = can decode

10/30



Linear codes for cryptography

® |dea for cryptographic use: Scramble efficiently decodable codes to hide structure
® |egitimate user has trapdoor — private key + efficient decoder = can decode

® Adversary without trapdoor is faced with a random code and generic, inefficient decoding

10/30



Linear codes for cryptography

® |dea for cryptographic use: Scramble efficiently decodable codes to hide structure
® |egitimate user has trapdoor — private key + efficient decoder = can decode
® Adversary without trapdoor is faced with a random code and generic, inefficient decoding
® |nstantiations:
® McEliece 1978

® irreducible binary Goppa codes - still used today!

® everything else - broken!

® n=1024, k =524, t =50

® public key size: 536576 bits, ciphertext size: 1024 bits
® today, security of 60 bits

10/30



Linear codes for cryptography

® |dea for cryptographic use: Scramble efficiently decodable codes to hide structure
® |egitimate user has trapdoor — private key + efficient decoder = can decode
® Adversary without trapdoor is faced with a random code and generic, inefficient decoding
® |nstantiations:
® McEliece 1978

® irreducible binary Goppa codes - still used today!
® everything else - broken!
® n=1024, k =524, t =50
® public key size: 536576 bits, ciphertext size: 1024 bits
® today, security of 60 bits
® Niederreiter 1986

® Reed-Solomon codes - broken 1992 by Sidelnikov & Chestakov

10/30



Linear codes for cryptography

® |dea for cryptographic use: Scramble efficiently decodable codes to hide structure
® |egitimate user has trapdoor — private key + efficient decoder = can decode
® Adversary without trapdoor is faced with a random code and generic, inefficient decoding
® |nstantiations:
® McEliece 1978

® irreducible binary Goppa codes - still used today!
® everything else - broken!
® n=1024, k =524, t =50
® public key size: 536576 bits, ciphertext size: 1024 bits
® today, security of 60 bits
® Niederreiter 1986
® Reed-Solomon codes - broken 1992 by Sidelnikov & Chestakov

® McEliece and Niederreiter constructions are equivalent!

10/30



McEliece Cryptosystem - 1978

&

Key generation

Private key: generator matrix G’
invertible matrix S

permutation matrix P

Public key: G = SG'P

Niederreiter Cryptosystem - 1986

11/30



McEliece Cryptosystem - 1978 & Niederreiter Cryptosystem - 1986

Key generation

Private key: generator matrix G’
invertible matrix S
permutation matrix P

Public key: G = SG'P

Encryption of message m
Generate random error e of weight-t. Compute

ciphertext:
y=mG+e

11/30



McEliece Cryptosystem - 1978 Niederreiter Cryptosystem - 1986

Key generation Key generation
Private key: generator matrix G’ Private key: parity-check matrix H’
invertible matrix S invertible matrix S
permutation matrix P permutation matrix P
Public key: G = SG'P Public key: H = SH'P

Encryption of message m

Generate random error e of weight-t. Compute

ciphertext:
y=mG+e

Decryption of ciphertext y
Compute y' = yP~! and
x = DecodeG(y')

_ g1
Compute m = xS . 11/30



McEliece Cryptosystem - 1978 & Niederreiter Cryptosystem - 1986

Key generation Key generation
Private key: generator matrix G’ Private key: parity-check matrix H’
invertible matrix S invertible matrix S
permutation matrix P permutation matrix P
Public key: G = SG'P Public key: H = SH'P
Encryption of message m Encryption of message m
Generate random error e of weight-t. Compute Transform m into weight-t error e. Compute
ciphertext: ciphertext:
y=mG+e y=eH'

Decryption of ciphertext y
Compute y' = yP~! and
x = DecodeG(y')

_ g1
Compute m = xS . 11/30



McEliece Cryptosystem - 1978

Key generation

Private key: generator matrix G’
invertible matrix S
permutation matrix P

Public key: G = SG'P

Encryption of message m
Generate random error e of weight-t. Compute

ciphertext:
y=mG+e

Decryption of ciphertext y
Compute y' = yP~! and
x = DecodeG(y')

Compute m = xS1.

& Niederreiter Cryptosystem - 1986

Key generation

Private key: parity-check matrix H’
invertible matrix S
permutation matrix P

Public key: H = SH'P

Encryption of message m

Transform m into weight-t error e. Compute

ciphertext:
y = eH'

Decryption of ciphertext y
Compute y' = y(ST) ™!, (syndrome) decode y’
y/ — e/H/T

Compute e =e/(PT) 1.



Variety of code-based cryptosystems

® Variety of constructions
® McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
® Alekhnovich '03 encryption [Alekhnovich '03]

CFS signature[Courtois, Finiasz & Sendrier '01]

Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit & Girault '07]

® Quasi - cyclic schemes (HQC '17)

12/30



Variety of code-based cryptosystems

® Variety of constructions
® McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
® Alekhnovich '03 encryption [Alekhnovich '03]

CFS signature[Courtois, Finiasz & Sendrier '01]

Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit & Girault '07]

® Quasi - cyclic schemes (HQC '17)

® Variety of metrics

® Hamming metric
® Rank metric
® | ee metric

12/30



Variety of code-based cryptosystems

® Variety of constructions
® McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
® Alekhnovich '03 encryption [Alekhnovich '03]

CFS signature[Courtois, Finiasz & Sendrier '01]

Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit & Girault '07]

® Quasi - cyclic schemes (HQC '17)

® Variety of metrics

® Hamming metric
® Rank metric
® | ee metric

® Variety of codes

® Goppa codes
® LDPC, MDPC (NIST finalist: BIKE '17) and LRPC
® Reed-Solomon codes and Gabidulin codes

12/30



NIST code-based KEMs




NIST finalists

® July 22nd, 2020 - 3rd round NIST Finalists and Alternates announced
® 4 KEM finalists (5 alternates) - 3 code-based in Hamming metric

® 3 signature finalists (3 alternates) - No code-based

® Decision based mostly on security considerations!

® NIST: Performance wasn't the primary factor in our decisions, but we stayed aware of it
Encryption/KEMs Signatures
Crystals-Kyber Lattice MLWE CRYSTALS-Dilithium Lattice Fiat-Shamir
Saber Lattice MLWR nFesh tattice FrateStarr
Falcon Lattice Hash then sign
e - SPHINCS+ Symm Hash
* b S Picnic Symm ZKP
e T
NTRU Lattice NTRU
NTRUprime Lattice NTRU
SIKE lsogeny  lsogeny
BIKE Codes short Hamming
Hac Codes short Hamming
P romar = e
- T

13/30



NIST 4th round KEM candidates

Currently in the competition:

® Classic McEliece

® Based on the Niederreiter cryptosystem with binary Goppa codes
® Considered to be a conservative choice
® No decoding failures

14 /30



NIST 4th round KEM candidates

Currently in the competition:

® Classic McEliece
® Based on the Niederreiter cryptosystem with binary Goppa codes
® Considered to be a conservative choice
® No decoding failures
e BIKE
® Based on the Niederreiter cryptosystem with QC-MDPC (Quasi Cyclic Moderate-Density
Parity-Check) codes
® Bit-flipping decoding (now constant time)
® Negligible decoding failure rate

14 /30



NIST 4th round KEM candidates

Currently in the competition:

® Classic McEliece
® Based on the Niederreiter cryptosystem with binary Goppa codes
® Considered to be a conservative choice
® No decoding failures
e BIKE
® Based on the Niederreiter cryptosystem with QC-MDPC (Quasi Cyclic Moderate-Density
Parity-Check) codes
® Bit-flipping decoding (now constant time)
® Negligible decoding failure rate
e HQC
® Random Quasi Cyclic codes (BCH ® repetition codes, now Read-Muller ® Reed-Solomon)
® BCH decoding, now RMRS
® Negligible decoding failure rate
14 /30



NIST 4th round KEM candidates comparisson

Algorithm Security | pub.key(B) | priv.key(B) | ciphertxt | keygen/s | encaps/s decaps/s
Classic McEliece348864 Level 1 261 120 6 492 128 7.99 | 69325.00 19486.00
Classic McEliece460896 Level 3 524 160 13 932 240 2.53 | 38832.67 7627.00
Classic McEliece6688128 Level 5 104 992 14 120 240 1.87 | 20083.00 6355.67
Classic McEliece6960119 Level 5 1 047 319 13 948 226 1.95 | 19673.67 6911.33
Classic McEliece8192128 Level 5 1 357 824 14 120 240 1.84 | 15075.33 6317.00

BIKE Level 1 1 540 280 1572 3944.00 | 22975.00 1154.33
BIKE Level 3 3 082 418 3114 1315.89 | 10289.33 509.83
BIKE Level 5 5122 580 5 154 586.33 5140.67 185.60

HQC-128 Level 1 2 249 40 4 481 | 24009.67 | 12494.67 6728.33

HQC-192 Level 3 4 522 40 9 026 | 10973.67 5644.67 3294.00

HQC-256 Level 5 7 245 40 14 469 5945.33 3055.33 1740.67

KYBER512 Level 1 800 1632 768 | 93635.67 | 74457.67 | 107878.00

KYBER768 Level 3 1184 2 400 1088 | 60386.00 | 50918.67 68550.33

KYBER1024 Level 5 1568 3168 1568 | 46629.33 | 38147.67 49443.33

15/30



Security of Code-based crypto —
Information Set Decoding




Naive approach for syndrome decoding

Syndrome Decoding:
Given syndrome s, find e of weight at most t such that s = eH T

e [ 1

® e determines a linear combination of columns of H equal to s!

16 /30



Naive approach for syndrome decoding

Syndrome Decoding:
Given syndrome s, find e of weight at most t such that s = eH T

e [ 1

® e determines a linear combination of columns of H equal to s!

® Straightforward idea: Try out all linear combinations of t columns of H!

16 /30



Naive approach for syndrome decoding

Syndrome Decoding:
Given syndrome s, find e of weight at most t such that s = eH T

e [ 1

® e determines a linear combination of columns of H equal to s!

® Straightforward idea: Try out all linear combinations of t columns of H!

® Guess and verify approach until correct linear combination is found

16 /30



Naive approach for syndrome decoding

Syndrome Decoding:
Given syndrome s, find e of weight at most t such that s = eH T

e [ 1

® e determines a linear combination of columns of H equal to s!

® Straightforward idea: Try out all linear combinations of t columns of H!

® Guess and verify approach until correct linear combination is found
® Cost: () column operations

16 /30



Naive approach for syndrome decoding

Syndrome Decoding:
Given syndrome s, find e of weight at most t such that s = eH T

e [ 1

® e determines a linear combination of columns of H equal to s!

® Straightforward idea: Try out all linear combinations of t columns of H!

® Guess and verify approach until correct linear combination is found
® Cost: () column operations

® We can do better using Birthday paradox ~ ,/(7) column operations!

16 /30



Naive approach for syndrome decoding

Syndrome Decoding:

Given syndrome s, find e of weight at most t such that s = eH T

e [ 1

® e determines a linear combination of columns of H equal to s!

Straightforward idea: Try out all linear combinations of t columns of H!

® Guess and verify approach until correct linear combination is found
® Cost: () column operations

® We can do better using Birthday paradox ~ ,/(7) column operations!

® Even better using Information set decoding!

16 /30



Information set decoding [Prange ’62]

H’ S K s

’

e[ 1

® Split H randomly in two parts S of k columns and K of n — k columns, and hope that all
positions of S are error-free (i.e. S is an information set)
®le H=HP=[S|K] (Setalsoe’=eP')

17/30



Information set decoding [Prange ’62]

UH' us Us'

’

e[ 1

® Split H randomly in two parts S of k columns and K of n — k columns, and hope that all
positions of S are error-free (i.e. S is an information set)
®le H=HP=[S|K] (Setalsoe’=eP')
® Probability that guess is correct (g) (":k)/('t’)

® Compute U s.t. K is Gauss-reduced

17/30



Information set decoding [Prange ’62]

UH' us Us'

’

e[ 1

® Split H randomly in two parts S of k columns and K of n — k columns, and hope that all
positions of S are error-free (i.e. S is an information set)
®le H=HP=[S|K] (Setalsoe’=eP')
® Probability that guess is correct (g) (":k)/('t’)

® Compute U s.t. K is Gauss-reduced

® |f guess is correct, sU' has weight t

17/30



Information set decoding [Prange ’62]

UH' us Us'

’

e[ 1

® Split H randomly in two parts S of k columns and K of n — k columns, and hope that all
positions of S are error-free (i.e. S is an information set)
®le H=HP=[S|K] (Setalsoe’=eP')
® Probability that guess is correct (g) (":k)/('t’)
® Compute U s.t. K is Gauss-reduced
® If guess is correct, sUT has weight t

® Cost n(n— k) column operations

17/30



Information set decoding [Prange ’62]

UH' us Us'

’

e[ 1

® Split H randomly in two parts S of k columns and K of n — k columns, and hope that all
positions of S are error-free (i.e. S is an information set)
®le H=HP=[S|K] (Setalsoe’=eP')

® Probability that guess is correct (g) (":k)/('t’)

® Compute U s.t. K is Gauss-reduced

If guess is correct, sUT has weight t

® Cost n(n— k) column operations

® We can do slightly better by relaxing “error-freeness” of information set [Lee-Brickell '88]

® better probability but more work

17/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

=

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

=

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

=

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before

18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

us,

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before

® |f guess is correct, Je;,&; of weight p and sUT +&S{U" +&5, U" has weight t — 2p

18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

us,

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before
® |f guess is correct, Je;,&; of weight p and sUT +&S{U" +&5, U" has weight t — 2p

® 5o far, the same as before!

18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

us,

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before
® |f guess is correct, Je;,&; of weight p and sUT +&S{U" +&5, U" has weight t — 2p

® 5o far, the same as before!

® |dea for speedup of finding €1, &: collision search on smaller set of ¢ rows

18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

us,

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before
® |f guess is correct, Je;,&; of weight p and sUT +&S{U" +&5, U" has weight t — 2p

® 5o far, the same as before!

® |dea for speedup of finding €1, &: collision search on smaller set of ¢ rows

® Collision benefits from birthday paradox

18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

us,

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before

® |f guess is correct, Je;,&; of weight p and sUT +&S{U" +&5, U" has weight t — 2p
® so far, the same as before!

® |dea for speedup of finding €1, &: collision search on smaller set of ¢ rows

® Collision benefits from birthday paradox
® Smaller set of £ rows is like an early abort for non-collision

18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before
e If guess is correct, 3&;, &, of weight p and sUT 4+ &S/ U + &S, U has weight t — 2p

® 5o far, the same as before!

® |dea for speedup of finding €1, &: collision search on smaller set of ¢ rows
® Collision benefits from birthday paradox
® Smaller set of £ rows is like an early abort for non-collision

® p and / are small parameters that optimize the complexity 18/30



Introducing collision search in ISD [Stern '89; Dumer ’91]

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before
e If guess is correct, 3&;, &, of weight p and sUT 4+ &S/ U + &S, U has weight t — 2p

® 5o far, the same as before!

® |dea for speedup of finding €1, &: collision search on smaller set of ¢ rows
® Collision benefits from birthday paradox
® Smaller set of £ rows is like an early abort for non-collision

® p and / are small parameters that optimize the complexity 18/30



ISD attacks timeline

® Information Set Decoding: [Prange '62] - 20-120%"

® Allow non-perfect information set: [Lee & Brickell '88]

® Birthday improvement: [Stern, 89], [Dumer '91]

® [nitial McEliece parameters broken: [Bernstein, Lange, & Peters '08]
® Ball-collision decoding [Bernstein, Lange, & Peters '11]

® Asymptotic exponent improved [May, Meurer, & Thomae '11]

® Decoding one out of many [Sendrier '11]

® Even better asymptotic exponent [Becker, Joux, May, & Meurer '12] - 20-1019"
® “Nearest Neighbor” variant [May & Ozerov '15]

® Sublinear error weight [Canto Torres & Sendrier '16]

® |SD using Quantum walks (post-quantum) [Kachigar-Tillich '17]

® Nearest Neighbor BJMM [Both-May '17] - 20-09%%"

® Post-quantum “Nearest Neighbor” [Kirshanova '18]

19/30



Security of Code-based crypto —
Other attacks




Other attacks

® Dual attacks (lattice style)

® statistical decoding - reduce to LPN
® outperform ISD for low rate codes
® very recent, still work in progress [Carrier et al.’22, Meyer et al.’23]

20/30



Other attacks

® Dual attacks (lattice style)

® statistical decoding - reduce to LPN
® outperform ISD for low rate codes
® very recent, still work in progress [Carrier et al.’22, Meyer et al.’23]

® DOOM (Decode One Out of Many)

® Attacker is satisfied with one decoded ciphertext, when given many
® |SD algorithms can be improved by O(+/n)
® influence on quasi-cyclic codes, MDPC codes

20/30



Other attacks

® Dual attacks (lattice style)

® statistical decoding - reduce to LPN
® outperform ISD for low rate codes
® very recent, still work in progress [Carrier et al.’22, Meyer et al.’23]

® DOOM (Decode One Out of Many)

® Attacker is satisfied with one decoded ciphertext, when given many
® |SD algorithms can be improved by O(+/n)
® influence on quasi-cyclic codes, MDPC codes

® Key recovery attacks
® LDPC codes - polynomial-time (constant density)
® MDPC codes - generic decoding only O(2V") (density O(y/n))
® Algebraic attacks
® Polynomial-time distinguisher for high-rate alternant and Goppa codes
® No influence on Classic McEliece

20/30



Reaction attack [Verheul et al. 98]

21/30



Reaction attack [Verheul et al. 98]

mp, C;

21/30



Reaction attack [Verheul et al. 98]

mp, C;

21/30



Reaction attack [Verheul et al. 98]

c
mi, ¢ ! v <+ Decode(c;)

21/30



Reaction attack [Verheul et al. 98]

c
mi, ¢ ! v <+ Decode(c;)

my, C

21/30



Reaction attack [Verheul et al. 98]

c
mi, ¢ ! v <+ Decode(c;)

C2
my, C

21/30



Reaction attack [Verheul et al. 98]

c
mi, ¢ ! v <+ Decode(c;)

c
my, C; 2 v <+ Decode(c,)

21/30



Reaction attack [Verheul et al. 98]

c
mi, ¢ ! v <+ Decode(c;)

c
my, C; 2 v <+ Decode(c,)

21/30



Reaction attack [Verheul et al. 98]

c
mi, ¢ ! v <+ Decode(c;)

c
my, C; 2 v <+ Decode(c,)

mg, Gt

21/30



Reaction attack [Verheul et al.

'98]

C1
mi, ¢ v <+ Decode(c;)
C2
my, C; v <+ Decode(c,)
Ct
my, Ct

21/30



Reaction attack [Verheul et al.

'98]

c

mi, ¢ ! v <+ Decode(c;)
c

my, C; 2 v <+ Decode(c,)
c

me, C; ‘ X<~ Decode(c;)

21/30



Reaction attack [Verheul et al. 98]

C1

mi, ¢ v <+ Decode(c;)
C2
my, C; v <+ Decode(c,)
Ct
me, C; X<~ Decode(c;)
Pls resend!

A

21/30



Reaction attack [Verheul et al. 98]

C1
mp, C;
C2
my, C
.
Pls resend!

A

v <+ Decode(c;)

v <+ Decode(c,)

X<~ Decode(c;)

21/30



A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions

® For position i, s’ < s®H;

[l

0

= O

o =

1

o o
= O

1

e = s
o
1

-0 0
1

1| |1 1
0]

22/30



A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions

® For position i,

s’ < s®H;

[l

= O

o =

1

o O
= o

1

e = s
o
1
-0 : 0
o _ ¢
1 :
1 1
0]

22/30



A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions

® For position i,

s’ < s®H;

[l

= O

o =

1

o O
= o

1

e = s
o
1

-0 : 0
g _ |°
1 :
1 1
0]

22/30



A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions

® For position i,

s’ < s®H;

O =

= O

o =

1

o O
= O

1

e = s/
o

1

-0 : 1

1 _

1 :
1 0
L0

22/30



A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions

® For position i, s’ < s®H;

e =
® Ask a decoding failure oracle whether t is H B
exceeded - -
® A redundant error (e; = 1) cancels out g
® An additional error (e; = 0) leads to 1
failure 10100 -0 1
01---001---0 i _
S il | (B :
00 --r1g0 -1 |1 0
0]

22/30



A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions
® For position i, s < s@® H;

® Ask a decoding failure oracle whether t is

exceeded o

® A redundant error (e; = 1) cancels out g

® An additional error (e; = 0) leads to 1
failure 10100 -0 : 1

e Effort: k queries ot1---001 -0 1|

® Attacker only needs to recover an Dk .B B E : 1
information set od---WHE - 1 1 0

L0

22/30



A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions
® For position i, s < s@® H;

® Ask a decoding failure oracle whether t is

exceeded o
® A redundant error (e; = 1) cancels out g
® An additional error (e; = 0) leads to 1
failure 10 100 ---0 1
e Effort: k queries 01 001 -0 1|
® Attacker only needs to recover an Dk .B B E : i -
information set od---WHE - 1 1 0
® Even lees by iterative chunking
® Even less if attacker has some computational 0

power to solve a smaller Information Set
Decoding problem

22/30



Side-channel attacks

® Previous attack causes decoding failures regardless of the decoding failure rate of the scheme
(if any at all)

23/30



Side-channel attacks

® Previous attack causes decoding failures regardless of the decoding failure rate of the scheme
(if any at all)

® Side-channel decoding failure oracle can be efficiently constructed

® easy to turn into a message recovery attack (as seen above)

23/30



Side-channel attacks

® Previous attack causes decoding failures regardless of the decoding failure rate of the scheme
(if any at all)
® Side-channel decoding failure oracle can be efficiently constructed
® easy to turn into a message recovery attack (as seen above)
® Recently first key recovery attack on McEliece [Guo,Johansson,Johansson '22]

® Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.’23]

23/30



Side-channel attacks

® Previous attack causes decoding failures regardless of the decoding failure rate of the scheme
(if any at all)

Side-channel decoding failure oracle can be efficiently constructed

® easy to turn into a message recovery attack (as seen above)

Recently first key recovery attack on McEliece [Guo,Johansson,Johansson '22]

® Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.’23]

® Decoding algorithms are difficult to make constant time

® Timing attacks on McEliece, HQC, BIKE
® Rejection sampling exploited in HQC, BIKE

23/30



Side-channel attacks

® Previous attack causes decoding failures regardless of the decoding failure rate of the scheme
(if any at all)

Side-channel decoding failure oracle can be efficiently constructed

® easy to turn into a message recovery attack (as seen above)

Recently first key recovery attack on McEliece [Guo,Johansson,Johansson '22]

® Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.’23]

® Decoding algorithms are difficult to make constant time

® Timing attacks on McEliece, HQC, BIKE
® Rejection sampling exploited in HQC, BIKE

Side-channel attacks - biggest issue currently for post-quantum schemes

® For code-based schemes still not many countermeasures available
® Protection influences performance significantly
® Cheap and effective countermeasures are necessary

23/30



Side-channel attacks

® Previous attack causes decoding failures regardless of the decoding failure rate of the scheme
(if any at all)

Side-channel decoding failure oracle can be efficiently constructed

® easy to turn into a message recovery attack (as seen above)

Recently first key recovery attack on McEliece [Guo,Johansson,Johansson '22]

® Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.’23]

® Decoding algorithms are difficult to make constant time

® Timing attacks on McEliece, HQC, BIKE
® Rejection sampling exploited in HQC, BIKE

Side-channel attacks - biggest issue currently for post-quantum schemes

® For code-based schemes still not many countermeasures available
® Protection influences performance significantly
® Cheap and effective countermeasures are necessary

23/30



NIST’s additional round on
signatures




Code-based candidates

® Enhanced pgsigRM
® Fuleeca

® Wave

® CROSS

® SDitH

® | ESS

* MEDS

® ALTEQ

24/30



Code-based candidates

® Enhanced pgsigRM
® Fuleeca

® Wave

® CROSS

® SDitH

® | ESS

* MEDS

® ALTEQ

5 Fiat-Shamir signatures

3 of them based on equivalence problem

24/30



Digital signatures via the Fiat-Shamir transform

Y-protocol | P(Pksk) YC

com « Pg (sk) o

_—
$ k
. ch & Chs (1)

-«

resp < P1 (sk,com, ch) =
—

b «+ Vf (pk,com, ch, resp)

25/30



Digital signatures via the Fiat-Shamir transform

Y-protocol | P(Pksk) YC
com « Po"(sk) o
$
ch ch & Chs' (1)
-«
resp < P1"(sk,com, ch) =
—

b «+ Vf'(pk, com, ch, resp)

25/30



Digital signatures via the Fiat-Shamir transform

Y-protocol | P(Pksk) V(pk)
com « Po"(sk) o
—_—
ch & ChsT(1¥) ot
L
resp < P1"(sk, com, ch) =
—_—
b «+ Vf'(pk, com, ch, resp)
FS signature Signer Verifier
com < Po"(sk)
ch < H(m,com) ch < H(m, com)
resp < P1"(sk, com, ch) b < Vf’(pk, com, ch, resp)
output : o = (com, resp) output : b

25/30



Digital signatured based on hard equivalence problems

Code equivalence problem CE(Cy, C;):

Given Cq and Cy, find (if any) an isometry (preserves metric) ¢ s.t. C; = ¢(Co)

26 /30



Digital signatured based on hard equivalence problems

Code equivalence problem CE(Cy, C;):

Given Cq and Cy, find (if any) an isometry (preserves metric) ¢ s.t. C; = ¢(Co)

Hard code-based equivalence problems in NIST's 4th round?

® Code equivalence - LESS - Baldi et. al (Biasse et al.’20, LESS-FM - Barenghi et al.’21)

® Hamming metric, linear codes
® isometry defined by permutation matrix

26 /30



Digital signatured based on hard equivalence problems

Code equivalence problem CE(Cy, C;):

Given Cq and Cy, find (if any) an isometry (preserves metric) ¢ s.t. C; = ¢(Co)

Hard code-based equivalence problems in NIST's 4th round?

® Code equivalence - LESS - Baldi et. al (Biasse et al.’20, LESS-FM - Barenghi et al.’21)

® Hamming metric, linear codes
® isometry defined by permutation matrix

® Matrix code equivalence - MEDS - with T.Chou, R.Niederhagen, E.Persichetti,
T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22

26 /30



Digital signatured based on hard equivalence problems

Code equivalence problem CE(Cy, C;):

Given Cq and Cy, find (if any) an isometry (preserves metric) ¢ s.t. C; = ¢(Co)

Hard code-based equivalence problems in NIST's 4th round?

® Code equivalence - LESS - Baldi et. al (Biasse et al.’20, LESS-FM - Barenghi et al.’21)
® Hamming metric, linear codes
® isometry defined by permutation matrix
® Matrix code equivalence - MEDS - with T.Chou, R.Niederhagen, E.Persichetti,
T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22

® Rank metric, matrix codes
® isometry defined by non-singular matrices A, B

26 /30



Digital signatured based on hard equivalence problems

Code equivalence problem CE(Cy, C;):

Given Cq and Cy, find (if any) an isometry (preserves metric) ¢ s.t. C; = ¢(Co)

Hard code-based equivalence problems in NIST's 4th round?

® Code equivalence - LESS - Baldi et. al (Biasse et al.’20, LESS-FM - Barenghi et al.’21)
® Hamming metric, linear codes
® isometry defined by permutation matrix
® Matrix code equivalence - MEDS - with T.Chou, R.Niederhagen, E.Persichetti,
T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22
® Rank metric, matrix codes
® isometry defined by non-singular matrices A, B
® Alternate trilinear form equivalence - ALTEQ - Blase et al. (Tang et al.’22)
® Rank metric, skew-symmetric matrix codes

® isometry defined by non-singular matrix A

26 /30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Co,C1, }) V(Co, C1)

)
o

€« - - - — - - =

o

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

$o P(Co,C1,9) V(Co, C1)

o
o
)

€« - - - — - - =

o

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

$o P(Co,C1,9) V(Co, C1)

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Co,C1, }) V(Co, C1)

o
o
)

com « C’

€« - - - — - - =

o

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Co,C1, }) V(Co, C1)

o
o
)

com « C’

€« - - - — - - =

o

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Co,C1, }) V(Co, C1)

o
o
)

!
com
«C com

_—
ch & {0,1}

€« - - - — - - =

o

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Co,C1, }) V(Co, C1)
Co c
: com « C’ com
|
_
|
¢ o ch & {0,1}
%
v
C

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

. & P(Co,C1, ¢) V(Co, C1)
:O Gl &= C/ com
‘ :
4 o ch & {0,1}

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

c &0 . P(Co,C1, ¢) V(Co,C1)
0 B E——
!
| com + C com
|
_—
|
¢ o ch & (0,1}
| %
M resp <— ¢ch
C1 resp
_—

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Co,C1,¢) V(Co,C1)
Co c
| com «+ C’ com
|
_—
|
$
¢ ! N ch ch < {0,1}
| %
51 resp <— ¢ch resp
_—

27/30



> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

oo P(Co,C1, ¢) V(Co, C1)
Co —— ('
| com «+ C’ com
|
_—
|
$
¢ ! N ch ch < {0,1}
| %
51 resp <— ¢ch resp
_—
R
Cl = d)ch(cch)

27/30



Relation between problems

Matrix Code

Equivalence

Linear code
Monomial
Equiv.

Linear Code
Permutation
Equiv.

[CDAG2021]

Permutation
Equivalence
with zero
Hull

Alternating
Trilinear Form
Equivalence

Quadratic
Maps Linear
Equivalence

Graph

Isomorphism

[PGC98]

28/30



Relation between problems

Linear Code
Permutation
Equiv.

Linear code
Monomial
Equiv.

Matrix Code

Equivalence

[CDAG2021]

Permutation
Equivalence
with zero
Hull

wec 22

Quadratic
Maps Linear
Equivalence

Graph

Isomorphism

[PGC98]

@ Alternating

Trilinear Form
Equivalence

® Homogenous Quadratic Maps Linear Equivalence (hRQMLE) problem is well known equivalence
problem from multivariate crypto (instance of Isomorphism of Polynomials)

28/30



Relation between problems

Linear Code
Permutation
Equiv.

Linear code
Monomial
Equiv.

Matrix Code

Equivalence

[CDAG2021]

Tl-complete [GQT21]

Permutation
Equivalence

with zero
Hull

wec 22

Granh Quadratic
P Maps Linear

Equivalence

[PGC98]

Alternating
Trilinear Form
Equivalence

eqran™

Isomorphism

® Homogenous Quadratic Maps Linear Equivalence (hRQMLE) problem is well known equivalence
problem from multivariate crypto (instance of Isomorphism of Polynomials)

28/30



Parameters and performance of LESS, MEDS, ALTEQ

Level param. set Z;JZZIIE:KkB? Ssilzg:e('lt(uée)
| LESS-1b 13.7 8.4
| MEDS-9923 9.9 9.9
| ALTEQ Balanced 8 16
I LESS-3b 345 18.4
I MEDS-41711 41.7 41
I ALTEQ Balanced 32 48

® Standard optimizations: Multiple Public Keys 4+ Fixed-Weight Challenge Strings + Seed tree

29/30



Parameters and performance of LESS, MEDS, ALTEQ

Level param. set Z;JZZIIE:KkB? Ssilzg:e('lt(uée)
| LESS-1b 13.7 8.4
| MEDS-9923 9.9 9.9
| ALTEQ Balanced 8 16
I LESS-3b 345 18.4
I MEDS-41711 41.7 41
I ALTEQ Balanced 32 48

® Standard optimizations: Multiple Public Keys 4+ Fixed-Weight Challenge Strings + Seed tree
® New in MEDS: Public Key Compression

® generate public key partially from seed = signature size reduction
® Work in progress: use similar idea during signing

29/30



Parameters and performance of LESS, MEDS, ALTEQ

Level param. set :;JZZIIE:Kkg)y Ssilzg:e('lt(uée)
| LESS-1b 13.7 8.4
| MEDS-9923 9.9 9.9
| ALTEQ Balanced 8 16
I LESS-3b 345 18.4
I MEDS-41711 41.7 41
I ALTEQ Balanced 32 48

® Standard optimizations: Multiple Public Keys 4+ Fixed-Weight Challenge Strings + Seed tree
® New in MEDS: Public Key Compression

® generate public key partially from seed = signature size reduction
® Work in progress: use similar idea during signing
® Brand new in LESS: Information Set formulation, Canonical forms
® significant signature reduction
29/30



Thank you for listening!

30/30



ENTRUST m

SHIELD

ili Fortanix: KEYFACTOR N NOREG
THALES ‘d-trust.

I@I I K I R >ntion ascer’r?a @%&ﬁﬁzﬁlﬂsm

Consortium




	Slide 62
	What is  code-based cryptography?
	McEliece and Niederreiter cryptosystems
	NIST code-based KEMs
	Security of Code-based crypto –  Information Set Decoding
	Security of Code-based crypto –   Other attacks
	NIST's additional round on signatures
	Slide 118

