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What is
code-based cryptography?



Code-based cryptography - an area of post-quantum cryptography

Isogeny based cryptosystems —

KEMSs/NIKEs/signatures Multivariate Quadratic cryptosystems — mainly signatures
(Finding isogenies on (Polynomial System Solving —PoSSo,
supersingular elliptic curves) \ for quadratic polynomials - MQ problem)
Hard
Mathematical —— Code-based cryptosystems — mainly encryption/KEMs
Problems (decoding random linear codes, equivalence)
Hash-based signaturqs (only) Lattice-based cryptosystems — signatures/encryption/KEMs
(only secure hash function needed) (many different hard problems — SIS, SVP, LWE)
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Yet—not new at all!

Rainbow
Merkle signature
McEligce signature HFE scheme
ent(]:ryption adiene construction
scheme

1986

Lamport Niederreiter uov Isogeny based
signatures encryption signature DH key exchange
scheme scheme
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Yet—not new at all!

Rainbow
Merkle signature
.McEliece signature scheme
Sheryption scheme HFE

construction
scheme

1989 1996

Lamport uov Isogeny based
signatures encrvntion signature DH key exchange
scheme scheme

® McEliece cryptosystem is as old as RSA! ...
® But, huge public key =~ 70KB for 80 bits security

® Classic McEliece ~ 260KB for NIST level 1 security
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Basic principle — borrowed from noisy channel communication

A

L-_ Channel .
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X <«—— Decoder y

Noisy channels introduce errors to transmitted digital messages

® satellite to earth communication, mobile phone data, humans typing on keyboard, ...
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Noisy channels introduce errors to transmitted digital messages

® satellite to earth communication, mobile phone data, humans typing on keyboard, ...
Systems need a mechanism for correction of errors — They use error correcting codes

® Sender encodes the message by adding some redundancy

® Receiver decodes the message to remove the error
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How to use it in cryptography?

% X=X "'xk—bEncoder—l C=0¢Cy'Cy

el ...en —_

)
I

Add intentional noise

y=c+e

Y, X <+— Decoder
[
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How to use it in cryptography?

% X=Xy "'xk—bEncoder—l C=0Cy*Cy

el=e; e ——»
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® Sender encodes the message by adding some redundancy + introduces error (intentional noise)

® Receiver decodes the message to remove the error with knowledge of efficient decoding method

® For some codes, we know how to correct errors efficiently, bot not for all!
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Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of 5 of dimension k

® Defined by basis matrix — k X n generator matrix G
C={c|c=mG,mec F5}
® or by kernel matrix — (n — k) x n Parity-Check matrix H
C={c|cH' =0}

*GH" =0
e Systematic form of G = [lkx|T] = H = [T |[l(-_k)x(o—k)] (store only the redundant part T)

® Elements of C are called codewords — notation ci, ¢y, . ..
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Linear codes + Hamming distance basics

® Hamming weight of ¢ — number of non-zero coordinates of ¢ - notation hw(c)
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Linear codes + Hamming distance basics

® Hamming weight of ¢ — number of non-zero coordinates of ¢ - notation hw(c)

® Minimum weight d(C) = minco{hw(c)}

4 .
. =
Minimum distance of
the code C
/ .
\
L]
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Linear codes + Hamming distance basics

® Hamming weight of ¢ — number of non-zero coordinates of ¢ - notation hw(c)
® Minimum weight d(C) = minco{hw(c)}
® [f d(C) > 2t - the code can correct t errors (t bit-flips during transmission)

4 .
] . Hadlus i'.n;.lr ur;i.que
decoding of C

/2
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Linear codes basics

Encoding of messages:

c=mG
Transmission errors introduced:

y=c+e
Decoding: A procedure Decode():

Find ¢’ s.t. hw(c' —y) <t
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Linear codes basics

Encoding of messages:

c=mG
Transmission errors introduced:

y=c+e
Decoding: A procedure Decode():

Find ¢’ s.t. hw(c' —y) <t

Another (equivalent) way of looking at it:

Syndrome Decoding:
Given syndrome s = yH, find e of weight at most t such that s = eH "

® Syndrome decoding, equivalently, decoding of random codes is NP-hard
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McEliece and Niederreiter
cryptosystems



Linear codes for cryptography

® |dea for cryptographic use: Scramble efficiently decodable codes to hide structure
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Linear codes for cryptography

® |dea for cryptographic use: Scramble efficiently decodable codes to hide structure
® |egitimate user has trapdoor — private key + efficient decoder = can decode
® Adversary without trapdoor is faced with a random code and generic, inefficient decoding
® |nstantiations:
® McEliece 1978

® irreducible binary Goppa codes - still used today!
® everything else - broken!
® n=1024, k =524, t =50
® public key size: 536576 bits, ciphertext size: 1024 bits
® today, security of 60 bits
® Niederreiter 1986
® Reed-Solomon codes - broken 1992 by Sidelnikov & Chestakov

® McEliece and Niederreiter constructions are equivalent!
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McEliece Cryptosystem - 1978

&

Key generation

Private key: generator matrix G’
invertible matrix S

permutation matrix P

Public key: G = SG'P

Niederreiter Cryptosystem - 1986
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McEliece Cryptosystem - 1978 & Niederreiter Cryptosystem - 1986

Key generation

Private key: generator matrix G’
invertible matrix S
permutation matrix P

Public key: G = SG'P

Encryption of message m
Generate random error e of weight-t. Compute

ciphertext:
y=mG+e
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McEliece Cryptosystem - 1978

Key generation

Private key: generator matrix G’
invertible matrix S
permutation matrix P

Public key: G = SG'P

Encryption of message m
Generate random error e of weight-t. Compute

ciphertext:
y=mG+e

Decryption of ciphertext y
Compute y' = yP~! and
x = DecodeG(y')

Compute m = xS1.

& Niederreiter Cryptosystem - 1986

Key generation

Private key: parity-check matrix H’
invertible matrix S
permutation matrix P

Public key: H = SH'P

Encryption of message m

Transform m into weight-t error e. Compute

ciphertext:
y = eH'

Decryption of ciphertext y
Compute y' = y(ST) ™!, (syndrome) decode y’
y/ — e/H/T

Compute e =e/(PT) 1.



Variety of code-based cryptosystems

® Variety of constructions
® McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
® Alekhnovich '03 encryption [Alekhnovich '03]

CFS signature[Courtois, Finiasz & Sendrier '01]

Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit & Girault '07]

® Quasi - cyclic schemes (HQC '17)
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Variety of code-based cryptosystems

® Variety of constructions
® McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
® Alekhnovich '03 encryption [Alekhnovich '03]

CFS signature[Courtois, Finiasz & Sendrier '01]

Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit & Girault '07]

® Quasi - cyclic schemes (HQC '17)

® Variety of metrics

® Hamming metric
® Rank metric
® | ee metric

® Variety of codes

® Goppa codes
® LDPC, MDPC (NIST finalist: BIKE '17) and LRPC
® Reed-Solomon codes and Gabidulin codes
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NIST code-based KEMs




NIST finalists

® July 22nd, 2020 - 3rd round NIST Finalists and Alternates announced
® 4 KEM finalists (5 alternates) - 3 code-based in Hamming metric

® 3 signature finalists (3 alternates) - No code-based

® Decision based mostly on security considerations!

® NIST: Performance wasn't the primary factor in our decisions, but we stayed aware of it
Encryption/KEMs Signatures
Crystals-Kyber Lattice MLWE CRYSTALS-Dilithium Lattice Fiat-Shamir
Saber Lattice MLWR nFesh tattice FrateStarr
Falcon Lattice Hash then sign
e - SPHINCS+ Symm Hash
* b S Picnic Symm ZKP
e T
NTRU Lattice NTRU
NTRUprime Lattice NTRU
SIKE lsogeny  lsogeny
BIKE Codes short Hamming
Hac Codes short Hamming
P romar = e
- T
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NIST 4th round KEM candidates

Currently in the competition:

® Classic McEliece

® Based on the Niederreiter cryptosystem with binary Goppa codes
® Considered to be a conservative choice
® No decoding failures
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NIST 4th round KEM candidates

Currently in the competition:

® Classic McEliece
® Based on the Niederreiter cryptosystem with binary Goppa codes
® Considered to be a conservative choice
® No decoding failures
e BIKE
® Based on the Niederreiter cryptosystem with QC-MDPC (Quasi Cyclic Moderate-Density
Parity-Check) codes
® Bit-flipping decoding (now constant time)
® Negligible decoding failure rate
e HQC
® Random Quasi Cyclic codes (BCH ® repetition codes, now Read-Muller ® Reed-Solomon)
® BCH decoding, now RMRS
® Negligible decoding failure rate
14 /30



NIST 4th round KEM candidates comparisson

Algorithm Security | pub.key(B) | priv.key(B) | ciphertxt | keygen/s | encaps/s decaps/s
Classic McEliece348864 Level 1 261 120 6 492 128 7.99 | 69325.00 19486.00
Classic McEliece460896 Level 3 524 160 13 932 240 2.53 | 38832.67 7627.00
Classic McEliece6688128 Level 5 104 992 14 120 240 1.87 | 20083.00 6355.67
Classic McEliece6960119 Level 5 1 047 319 13 948 226 1.95 | 19673.67 6911.33
Classic McEliece8192128 Level 5 1 357 824 14 120 240 1.84 | 15075.33 6317.00

BIKE Level 1 1 540 280 1572 3944.00 | 22975.00 1154.33
BIKE Level 3 3 082 418 3114 1315.89 | 10289.33 509.83
BIKE Level 5 5122 580 5 154 586.33 5140.67 185.60

HQC-128 Level 1 2 249 40 4 481 | 24009.67 | 12494.67 6728.33

HQC-192 Level 3 4 522 40 9 026 | 10973.67 5644.67 3294.00

HQC-256 Level 5 7 245 40 14 469 5945.33 3055.33 1740.67

KYBER512 Level 1 800 1632 768 | 93635.67 | 74457.67 | 107878.00

KYBER768 Level 3 1184 2 400 1088 | 60386.00 | 50918.67 68550.33

KYBER1024 Level 5 1568 3168 1568 | 46629.33 | 38147.67 49443.33
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Security of Code-based crypto —
Information Set Decoding




Naive approach for syndrome decoding

Syndrome Decoding:
Given syndrome s, find e of weight at most t such that s = eH T

e [ 1

® e determines a linear combination of columns of H equal to s!
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Naive approach for syndrome decoding

Syndrome Decoding:

Given syndrome s, find e of weight at most t such that s = eH T

e [ 1

® e determines a linear combination of columns of H equal to s!

Straightforward idea: Try out all linear combinations of t columns of H!

® Guess and verify approach until correct linear combination is found
® Cost: () column operations

® We can do better using Birthday paradox ~ ,/(7) column operations!

® Even better using Information set decoding!

16 /30



Information set decoding [Prange ’62]

H’ S K s

’

e[ 1

® Split H randomly in two parts S of k columns and K of n — k columns, and hope that all
positions of S are error-free (i.e. S is an information set)
®le H=HP=[S|K] (Setalsoe’=eP')
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Information set decoding [Prange ’62]

UH' us Us'

’

e[ 1

® Split H randomly in two parts S of k columns and K of n — k columns, and hope that all
positions of S are error-free (i.e. S is an information set)
®le H=HP=[S|K] (Setalsoe’=eP')

® Probability that guess is correct (g) (":k)/('t’)

® Compute U s.t. K is Gauss-reduced

If guess is correct, sUT has weight t

® Cost n(n— k) column operations

® We can do slightly better by relaxing “error-freeness” of information set [Lee-Brickell '88]

® better probability but more work
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Introducing collision search in ISD [Stern '89; Dumer ’91]

=

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set
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us,

® Split H as before, except hope for the error distribution in the figure the positions of S contain
2p errors, where p in left half S;, and p in right half S, and there are no errors on chosen /
positions outside of information set

® Gauss-reduce K as before

® |f guess is correct, Je;,&; of weight p and sUT +&S{U" +&5, U" has weight t — 2p
® so far, the same as before!

® |dea for speedup of finding €1, &: collision search on smaller set of ¢ rows

® Collision benefits from birthday paradox
® Smaller set of £ rows is like an early abort for non-collision
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Introducing collision search in ISD [Stern '89; Dumer ’91]

® Split H as before, except hope for the error distribution in the figure the positions of S contain
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ISD attacks timeline

® Information Set Decoding: [Prange '62] - 20-120%"

® Allow non-perfect information set: [Lee & Brickell '88]

® Birthday improvement: [Stern, 89], [Dumer '91]

® [nitial McEliece parameters broken: [Bernstein, Lange, & Peters '08]
® Ball-collision decoding [Bernstein, Lange, & Peters '11]

® Asymptotic exponent improved [May, Meurer, & Thomae '11]

® Decoding one out of many [Sendrier '11]

® Even better asymptotic exponent [Becker, Joux, May, & Meurer '12] - 20-1019"
® “Nearest Neighbor” variant [May & Ozerov '15]

® Sublinear error weight [Canto Torres & Sendrier '16]

® |SD using Quantum walks (post-quantum) [Kachigar-Tillich '17]

® Nearest Neighbor BJMM [Both-May '17] - 20-09%%"

® Post-quantum “Nearest Neighbor” [Kirshanova '18]
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® outperform ISD for low rate codes
® very recent, still work in progress [Carrier et al.’22, Meyer et al.’23]

® DOOM (Decode One Out of Many)

® Attacker is satisfied with one decoded ciphertext, when given many
® |SD algorithms can be improved by O(+/n)
® influence on quasi-cyclic codes, MDPC codes

® Key recovery attacks
® LDPC codes - polynomial-time (constant density)
® MDPC codes - generic decoding only O(2V") (density O(y/n))
® Algebraic attacks
® Polynomial-time distinguisher for high-rate alternant and Goppa codes
® No influence on Classic McEliece
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Reaction attack [Verheul et al. 98]
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C2
my, C
.
Pls resend!

A

v <+ Decode(c;)

v <+ Decode(c,)
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A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions

® For position i, s’ < s®H;
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A reaction (decoding failure) attack on Niederreiter

® |dea: iteratively test the error vector positions
® For position i, s < s@® H;

® Ask a decoding failure oracle whether t is

exceeded o
® A redundant error (e; = 1) cancels out g
® An additional error (e; = 0) leads to 1
failure 10 100 ---0 1
e Effort: k queries 01 001 -0 1|
® Attacker only needs to recover an Dk .B B E : i -
information set od---WHE - 1 1 0
® Even lees by iterative chunking
® Even less if attacker has some computational 0

power to solve a smaller Information Set
Decoding problem
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NIST’s additional round on
signatures




Code-based candidates

® Enhanced pgsigRM
® Fuleeca

® Wave

® CROSS

® SDitH

® | ESS

* MEDS

® ALTEQ
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Code-based candidates
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® Fuleeca

® Wave

® CROSS

® SDitH

® | ESS

* MEDS

® ALTEQ

5 Fiat-Shamir signatures

3 of them based on equivalence problem
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Digital signatures via the Fiat-Shamir transform

Y-protocol | P(Pksk) YC

com « Pg (sk) o

_—
$ k
. ch & Chs (1)

-«

resp < P1 (sk,com, ch) =
—

b «+ Vf (pk,com, ch, resp)
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Digital signatures via the Fiat-Shamir transform

Y-protocol | P(Pksk) V(pk)
com « Po"(sk) o
—_—
ch & ChsT(1¥) ot
L
resp < P1"(sk, com, ch) =
—_—
b «+ Vf'(pk, com, ch, resp)
FS signature Signer Verifier
com < Po"(sk)
ch < H(m,com) ch < H(m, com)
resp < P1"(sk, com, ch) b < Vf’(pk, com, ch, resp)
output : o = (com, resp) output : b

25/30



Digital signatured based on hard equivalence problems

Code equivalence problem CE(Cy, C;):

Given Cq and Cy, find (if any) an isometry (preserves metric) ¢ s.t. C; = ¢(Co)
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® Code equivalence - LESS - Baldi et. al (Biasse et al.’20, LESS-FM - Barenghi et al.’21)
® Hamming metric, linear codes
® isometry defined by permutation matrix
® Matrix code equivalence - MEDS - with T.Chou, R.Niederhagen, E.Persichetti,
T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22
® Rank metric, matrix codes
® isometry defined by non-singular matrices A, B
® Alternate trilinear form equivalence - ALTEQ - Blase et al. (Tang et al.’22)
® Rank metric, skew-symmetric matrix codes

® isometry defined by non-singular matrix A
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> protocol from Code Equivalence Problems

Let ¢ be an isometry s.t. C1 = ¢(Co).
Given Cy,C1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Co,C1, }) V(Co, C1)

)
o

€« - - - — - - =

o
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Relation between problems

Matrix Code

Equivalence

Linear code
Monomial
Equiv.

Linear Code
Permutation
Equiv.

[CDAG2021]

Permutation
Equivalence
with zero
Hull

Alternating
Trilinear Form
Equivalence

Quadratic
Maps Linear
Equivalence

Graph

Isomorphism

[PGC98]
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Tl-complete [GQT21]
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Alternating
Trilinear Form
Equivalence
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Isomorphism

® Homogenous Quadratic Maps Linear Equivalence (hRQMLE) problem is well known equivalence
problem from multivariate crypto (instance of Isomorphism of Polynomials)
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Parameters and performance of LESS, MEDS, ALTEQ

Level param. set Z;JZZIIE:KkB? Ssilzg:e('lt(uée)
| LESS-1b 13.7 8.4
| MEDS-9923 9.9 9.9
| ALTEQ Balanced 8 16
I LESS-3b 345 18.4
I MEDS-41711 41.7 41
I ALTEQ Balanced 32 48

® Standard optimizations: Multiple Public Keys 4+ Fixed-Weight Challenge Strings + Seed tree
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Level param. set :;JZZIIE:Kkg)y Ssilzg:e('lt(uée)
| LESS-1b 13.7 8.4
| MEDS-9923 9.9 9.9
| ALTEQ Balanced 8 16
I LESS-3b 345 18.4
I MEDS-41711 41.7 41
I ALTEQ Balanced 32 48

® Standard optimizations: Multiple Public Keys 4+ Fixed-Weight Challenge Strings + Seed tree
® New in MEDS: Public Key Compression

® generate public key partially from seed = signature size reduction
® Work in progress: use similar idea during signing
® Brand new in LESS: Information Set formulation, Canonical forms
® significant signature reduction
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Thank you for listening!
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