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What is

code-based cryptography?



Code-based cryptography - an area of post-quantum cryptography
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Yet–not new at all!

• McEliece cryptosystem is as old as RSA! . . .

• But, huge public key ≈ 70KB for 80 bits security

• Classic McEliece ≈ 260KB for NIST level 1 security
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• satellite to earth communication, mobile phone data, humans typing on keyboard, . . .

5 / 30



Basic principle – borrowed from noisy channel communication

Noisy channels introduce errors to transmitted digital messages

• satellite to earth communication, mobile phone data, humans typing on keyboard, . . .

Systems need a mechanism for correction of errors – They use error correcting codes

5 / 30



Basic principle – borrowed from noisy channel communication

Noisy channels introduce errors to transmitted digital messages

• satellite to earth communication, mobile phone data, humans typing on keyboard, . . .

Systems need a mechanism for correction of errors – They use error correcting codes

• Sender encodes the message by adding some redundancy

5 / 30



Basic principle – borrowed from noisy channel communication

Noisy channels introduce errors to transmitted digital messages

• satellite to earth communication, mobile phone data, humans typing on keyboard, . . .

Systems need a mechanism for correction of errors – They use error correcting codes

• Sender encodes the message by adding some redundancy

• Receiver decodes the message to remove the error

5 / 30



How to use it in cryptography?

6 / 30



How to use it in cryptography?

• Sender encodes the message by adding some redundancy + introduces error (intentional noise)

• Receiver decodes the message to remove the error with knowledge of efficient decoding method

• For some codes, we know how to correct errors efficiently, bot not for all!

6 / 30



How to use it in cryptography?

• Sender encodes the message by adding some redundancy + introduces error (intentional noise)

• Receiver decodes the message to remove the error with knowledge of efficient decoding method

• For some codes, we know how to correct errors efficiently, bot not for all!

• Decoding random codes is a hard problem ⇒ we can use codes in cryptography!

6 / 30



How to use it in cryptography?

• Sender encodes the message by adding some redundancy + introduces error (intentional noise)

• Receiver decodes the message to remove the error with knowledge of efficient decoding method

• For some codes, we know how to correct errors efficiently, bot not for all!

• Decoding random codes is a hard problem ⇒ we can use codes in cryptography!

6 / 30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of Fn
2 of dimension k

7 / 30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of Fn
2 of dimension k

• Defined by basis matrix – k × n generator matrix G

C = {c | c = mG,m ∈ F
k

2}

7 / 30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of Fn
2 of dimension k

• Defined by basis matrix – k × n generator matrix G

C = {c | c = mG,m ∈ F
k

2}

• or by kernel matrix – (n − k)× n Parity-Check matrix H

C = {c | cH⊤ = 0}

7 / 30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of Fn
2 of dimension k

• Defined by basis matrix – k × n generator matrix G

C = {c | c = mG,m ∈ F
k

2}

• or by kernel matrix – (n − k)× n Parity-Check matrix H

C = {c | cH⊤ = 0}

• GH⊤ = 0

7 / 30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of Fn
2 of dimension k

• Defined by basis matrix – k × n generator matrix G

C = {c | c = mG,m ∈ F
k

2}

• or by kernel matrix – (n − k)× n Parity-Check matrix H

C = {c | cH⊤ = 0}

• GH⊤ = 0

• Systematic form of G = [Ik×k |T] ⇒ H = [T⊤|I(n−k)×(n−k)] (store only the redundant part T)

7 / 30



Linear codes basics

Binary [n, k] linear code C of length n and dimension k is a subspace of Fn
2 of dimension k

• Defined by basis matrix – k × n generator matrix G

C = {c | c = mG,m ∈ F
k

2}

• or by kernel matrix – (n − k)× n Parity-Check matrix H

C = {c | cH⊤ = 0}

• GH⊤ = 0

• Systematic form of G = [Ik×k |T] ⇒ H = [T⊤|I(n−k)×(n−k)] (store only the redundant part T)

• Elements of C are called codewords – notation c1, c2, . . .
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Linear codes + Hamming distance basics

• Hamming weight of c – number of non-zero coordinates of c - notation hw(c)
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Linear codes + Hamming distance basics

• Hamming weight of c – number of non-zero coordinates of c - notation hw(c)

• Minimum weight d(C) = minc ̸=0{hw(c)}
• If d(C) > 2t - the code can correct t errors (t bit-flips during transmission)
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Linear codes basics

Encoding of messages:

c = mG

Transmission errors introduced:

y = c+ e

Decoding: A procedure Decode():

Find c′ s.t. hw(c′ − y) ≤ t
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Linear codes basics

Encoding of messages:

c = mG

Transmission errors introduced:

y = c+ e

Decoding: A procedure Decode():

Find c′ s.t. hw(c′ − y) ≤ t

Another (equivalent) way of looking at it:

Syndrome Decoding:

Given syndrome s = yH⊤, find e of weight at most t such that s = eH⊤

• Syndrome decoding, equivalently, decoding of random codes is NP-hard
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McEliece and Niederreiter

cryptosystems



Linear codes for cryptography

• Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
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• Idea for cryptographic use: Scramble efficiently decodable codes to hide structure

• Legitimate user has trapdoor – private key + efficient decoder ⇒ can decode

• Adversary without trapdoor is faced with a random code and generic, inefficient decoding

• Instantiations:

• McEliece 1978

• irreducible binary Goppa codes - still used today!
• everything else - broken!
• n = 1024, k = 524, t = 50
• public key size: 536576 bits, ciphertext size: 1024 bits
• today, security of 60 bits

• Niederreiter 1986

• Reed-Solomon codes - broken 1992 by Sidelnikov & Chestakov

• McEliece and Niederreiter constructions are equivalent!
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McEliece Cryptosystem - 1978 & Niederreiter Cryptosystem - 1986

Key generation

Private key: generator matrix G′

invertible matrix S

permutation matrix P

Public key: G = SG′P
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Compute y′ = yP−1 and

x = DecodeG(y′)

Compute m = xS−1.

Key generation

Private key: parity-check matrix H′

invertible matrix S

permutation matrix P

Public key: H = SH′P

Encryption of message m

Transform m into weight-t error e. Compute

ciphertext:
y = eH⊤

Decryption of ciphertext y

Compute y′ = y(S⊤)−1, (syndrome) decode y′

y′ = e′H′⊤

Compute e = e′(P⊤)−1.
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Variety of code-based cryptosystems

• Variety of constructions

• McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece ’17)
• Alekhnovich ’03 encryption [Alekhnovich ’03]
• CFS signature[Courtois, Finiasz & Sendrier ’01]
• Fiat-Shamir signatures [Stern ’93; Veron ’95; Cayrel, Gaborit & Girault ’07]
• Quasi - cyclic schemes (HQC ’17)
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• CFS signature[Courtois, Finiasz & Sendrier ’01]
• Fiat-Shamir signatures [Stern ’93; Veron ’95; Cayrel, Gaborit & Girault ’07]
• Quasi - cyclic schemes (HQC ’17)

• Variety of metrics

• Hamming metric
• Rank metric
• Lee metric

• Variety of codes

• Goppa codes
• LDPC, MDPC (NIST finalist: BIKE ’17) and LRPC
• Reed-Solomon codes and Gabidulin codes
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NIST code-based KEMs



NIST finalists

• July 22nd, 2020 - 3rd round NIST Finalists and Alternates announced

• 4 KEM finalists (5 alternates) - 3 code-based in Hamming metric

• 3 signature finalists (3 alternates) - No code-based

• Decision based mostly on security considerations!

• NIST: Performance wasn’t the primary factor in our decisions, but we stayed aware of it
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NIST 4th round KEM candidates

Currently in the competition:

• Classic McEliece

• Based on the Niederreiter cryptosystem with binary Goppa codes
• Considered to be a conservative choice
• No decoding failures
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• Classic McEliece

• Based on the Niederreiter cryptosystem with binary Goppa codes
• Considered to be a conservative choice
• No decoding failures

• BIKE

• Based on the Niederreiter cryptosystem with QC-MDPC (Quasi Cyclic Moderate-Density

Parity-Check) codes
• Bit-flipping decoding (now constant time)
• Negligible decoding failure rate

• HQC

• Random Quasi Cyclic codes (BCH ⊗ repetition codes, now Read-Muller ⊗ Reed-Solomon)
• BCH decoding, now RMRS
• Negligible decoding failure rate
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NIST 4th round KEM candidates comparisson

Algorithm Security pub.key(B) priv.key(B) ciphertxt keygen/s encaps/s decaps/s

Classic McEliece348864 Level 1 261 120 6 492 128 7.99 69325.00 19486.00

Classic McEliece460896 Level 3 524 160 13 932 240 2.53 38832.67 7627.00

Classic McEliece6688128 Level 5 104 992 14 120 240 1.87 20083.00 6355.67

Classic McEliece6960119 Level 5 1 047 319 13 948 226 1.95 19673.67 6911.33

Classic McEliece8192128 Level 5 1 357 824 14 120 240 1.84 15075.33 6317.00

BIKE Level 1 1 540 280 1 572 3944.00 22975.00 1154.33

BIKE Level 3 3 082 418 3 114 1315.89 10289.33 509.83

BIKE Level 5 5 122 580 5 154 586.33 5140.67 185.60

HQC-128 Level 1 2 249 40 4 481 24009.67 12494.67 6728.33

HQC-192 Level 3 4 522 40 9 026 10973.67 5644.67 3294.00

HQC-256 Level 5 7 245 40 14 469 5945.33 3055.33 1740.67

KYBER512 Level 1 800 1 632 768 93635.67 74457.67 107878.00

KYBER768 Level 3 1 184 2 400 1 088 60386.00 50918.67 68550.33

KYBER1024 Level 5 1 568 3 168 1 568 46629.33 38147.67 49443.33
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Security of Code-based crypto –

Information Set Decoding



Naive approach for syndrome decoding

Syndrome Decoding:

Given syndrome s, find e of weight at most t such that s = eH⊤

• e determines a linear combination of columns of H equal to s!
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• Straightforward idea: Try out all linear combinations of t columns of H!

• Guess and verify approach until correct linear combination is found
• Cost:

(

n

t

)

column operations

• We can do better using Birthday paradox ≈
√

(

n

t

)

column operations!

• Even better using Information set decoding!

16 / 30



Information set decoding [Prange ’62]

• Split H randomly in two parts S of k columns and K of n − k columns, and hope that all

positions of S are error-free (i.e. S is an information set)
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(
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/
(

n

t

)

• Compute U s.t. K is Gauss-reduced

• If guess is correct, sU⊤ has weight t

• Cost n(n − k) column operations

• We can do slightly better by relaxing “error-freeness” of information set [Lee-Brickell ’88]

• better probability but more work
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Introducing collision search in ISD [Stern ’89; Dumer ’91]

• Split H as before, except hope for the error distribution in the figure the positions of S contain

2p errors, where p in left half S1, and p in right half S2 and there are no errors on chosen ℓ

positions outside of information set
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⊤
1 U

⊤ + ē2S
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ISD attacks timeline

• Information Set Decoding: [Prange ’62] - 20.1208n

• Allow non-perfect information set: [Lee & Brickell ’88]

• Birthday improvement: [Stern, 89], [Dumer ’91]

• Initial McEliece parameters broken: [Bernstein, Lange, & Peters ’08]

• Ball-collision decoding [Bernstein, Lange, & Peters ’11]

• Asymptotic exponent improved [May, Meurer, & Thomae ’11]

• Decoding one out of many [Sendrier ’11]

• Even better asymptotic exponent [Becker, Joux, May, & Meurer ’12] - 20.1019n

• “Nearest Neighbor” variant [May & Ozerov ’15]

• Sublinear error weight [Canto Torres & Sendrier ’16]

• ISD using Quantum walks (post-quantum) [Kachigar-Tillich ’17]

• Nearest Neighbor BJMM [Both-May ’17] - 20.0953n

• Post-quantum “Nearest Neighbor” [Kirshanova ’18]
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Other attacks

• Dual attacks (lattice style)

• statistical decoding - reduce to LPN
• outperform ISD for low rate codes
• very recent, still work in progress [Carrier et al.’22, Meyer et al.’23]
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• statistical decoding - reduce to LPN
• outperform ISD for low rate codes
• very recent, still work in progress [Carrier et al.’22, Meyer et al.’23]

• DOOM (Decode One Out of Many)

• Attacker is satisfied with one decoded ciphertext, when given many
• ISD algorithms can be improved by O(√n)
• influence on quasi-cyclic codes, MDPC codes

• Key recovery attacks

• LDPC codes - polynomial-time (constant density)
• MDPC codes - generic decoding only O(2

√
n) (density O(√n))

• Algebraic attacks

• Polynomial-time distinguisher for high-rate alternant and Goppa codes
• No influence on Classic McEliece
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Reaction attack [Verheul et al. ’98]
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A reaction (decoding failure) attack on Niederreiter

• Idea: iteratively test the error vector positions

• For position i , s′ ← s⊕Hi
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• Idea: iteratively test the error vector positions

• For position i , s′ ← s⊕Hi

• Ask a decoding failure oracle whether t is

exceeded

• A redundant error (ei = 1) cancels out
• An additional error (ei = 0) leads to

failure

• Effort: k queries

• Attacker only needs to recover an

information set

• Even lees by iterative chunking

• Even less if attacker has some computational

power to solve a smaller Information Set

Decoding problem
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Side-channel attacks

• Previous attack causes decoding failures regardless of the decoding failure rate of the scheme

(if any at all)
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NIST’s additional round on

signatures



Code-based candidates

• Enhanced pqsigRM

• FuLeeca

• Wave

• CROSS

• SDitH

• LESS

• MEDS

• ALTEQ

24 / 30



Code-based candidates

• Enhanced pqsigRM

• FuLeeca

• Wave

• CROSS

• SDitH

• LESS

• MEDS

• ALTEQ

• 5 Fiat-Shamir signatures

• 3 of them based on equivalence problem
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Digital signatures via the Fiat-Shamir transform

Σ-protocol P(pk, sk) V(pk)

com← P0 (sk) com

ch
$
← ChS (1k )ch

resp← P1 (sk, com, ch) resp

b ← Vf (pk, com, ch, resp)

25 / 30



Digital signatures via the Fiat-Shamir transform

Σ-protocol P(pk, sk) V(pk)

com← P0
r (sk) com

ch
$
← ChSr (1k )ch

resp← P1
r (sk, com, ch) resp

b ← Vfr (pk, com, ch, resp)

25 / 30



Digital signatures via the Fiat-Shamir transform

Σ-protocol P(pk, sk) V(pk)

com← P0
r (sk) com

ch
$
← ChSr (1k ) ch

resp← P1
r (sk, com, ch) resp

b ← Vfr (pk, com, ch, resp)

↓ ↓ ↓

FS signature Signer

com← P0
r (sk)

ch← H(m, com)

resp← P1
r (sk, com, ch)

output : σ = (com, resp)

Verifier

ch← H(m, com)

b ← Vfr (pk, com, ch, resp)

output : b
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Digital signatured based on hard equivalence problems

Code equivalence problem CE(C0, C1):

Given C0 and C1, find (if any) an isometry (preserves metric) φ s.t. C1 = φ(C0)
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• Code equivalence - LESS - Baldi et. al (Biasse et al.’20, LESS-FM - Barenghi et al.’21)

• Hamming metric, linear codes
• isometry defined by permutation matrix

• Matrix code equivalence - MEDS - with T.Chou, R.Niederhagen, E.Persichetti,

T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, ’22

• Rank metric, matrix codes
• isometry defined by non-singular matrices A,B

• Alternate trilinear form equivalence - ALTEQ - Blase et al. (Tang et al.’22)

• Rank metric, skew-symmetric matrix codes
• isometry defined by non-singular matrix A
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Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. C1 = ϕ(C0).
Given C0, C1, the prover P wants to prove to the verifier V knowledge of ϕ without revealing any

information about it

C0 C′

C1

ϕ

ϕ0

ϕ1

P(C0, C1, φ) V(C0, C1)
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ϕ
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?
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Relation between problems

Linear Code

Permutation
Equiv.

Graph

Isomorphism

Permutation
Equivalence

with zero

Hull

Linear code

Monomial
Equiv.

If q = nO(1)

Matrix Code

Equivalence[CDAG2021]

Quadratic
Maps Linear

Equivalence

[PGC98]
Alternating

Trilinear Form
Equivalence
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[PGC98]
Alternating
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Equivalence

[GQT21]

WCC ’22

TI-complete [GQT21]

• Homogenous Quadratic Maps Linear Equivalence (hQMLE) problem is well known equivalence

problem from multivariate crypto (instance of Isomorphism of Polynomials)
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Parameters and performance of LESS, MEDS, ALTEQ

Level param. set
public key

size (KB)

signature

size (KB)

I LESS-1b 13.7 8.4

I MEDS-9923 9.9 9.9

I ALTEQ Balanced 8 16

III LESS-3b 34.5 18.4

III MEDS-41711 41.7 41

III ALTEQ Balanced 32 48

• Standard optimizations: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
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I MEDS-9923 9.9 9.9

I ALTEQ Balanced 8 16

III LESS-3b 34.5 18.4

III MEDS-41711 41.7 41

III ALTEQ Balanced 32 48

• Standard optimizations: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree

• New in MEDS: Public Key Compression

• generate public key partially from seed ⇒ signature size reduction
• Work in progress: use similar idea during signing

• Brand new in LESS: Information Set formulation, Canonical forms

• significant signature reduction
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Thank you for listening!
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Cryptography Conference

Post-Quantum
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