Code-based Cryptography

Simona Samardjiska

Assistant Professor at Digital Security Group, ICIS, Radboud University

Code-based cryptography

Simona Samardjiska
Digital Security Group, Radboud University
simonas@cs.ru.nl

Post-Quantum Cryptography Conference, November 07, 2023

What is code-based cryptography?

Isogeny based cryptosystems -
KEMs/NIKEs/signatures
(Finding isogenies on supersingular elliptic curves)

Hard Mathematical Problems

Hash-based signatures (only)
(only secure hash function needed)

Multivariate Quadratic cryptosystems - mainly signatures
(Polynomial System Solving -PoSSo,
for quadratic polynomials - MQ problem)
\longrightarrow Code-based cryptosystems - mainly encryption/KEMs (decoding random linear codes, equivalence)

Lattice-based cryptosystems - signatures/encryption/KEMs (many different hard problems - SIS, SVP, LWE)

Yet-not new at all!

- McEliece cryptosystem is as old as RSA! ...

- McEliece cryptosystem is as old as RSA! ...
- But, huge public key $\approx 70 K B$ for 80 bits security

- McEliece cryptosystem is as old as RSA! ...
- But, huge public key $\approx 70 K B$ for 80 bits security
- Classic McEliece ≈ 260 KB for NIST level 1 security

Noisy channels introduce errors to transmitted digital messages

- satellite to earth communication, mobile phone data, humans typing on keyboard, ...

Noisy channels introduce errors to transmitted digital messages

- satellite to earth communication, mobile phone data, humans typing on keyboard, ...

Systems need a mechanism for correction of errors - They use error correcting codes

Noisy channels introduce errors to transmitted digital messages

- satellite to earth communication, mobile phone data, humans typing on keyboard, ... Systems need a mechanism for correction of errors - They use error correcting codes
- Sender encodes the message by adding some redundancy

Noisy channels introduce errors to transmitted digital messages

- satellite to earth communication, mobile phone data, humans typing on keyboard, ... Systems need a mechanism for correction of errors - They use error correcting codes
- Sender encodes the message by adding some redundancy
- Receiver decodes the message to remove the error

- Sender encodes the message by adding some redundancy + introduces error (intentional noise)
- Receiver decodes the message to remove the error with knowledge of efficient decoding method
- For some codes, we know how to correct errors efficiently, bot not for all!

- Sender encodes the message by adding some redundancy + introduces error (intentional noise)
- Receiver decodes the message to remove the error with knowledge of efficient decoding method
- For some codes, we know how to correct errors efficiently, bot not for all!
- Decoding random codes is a hard problem \Rightarrow we can use codes in cryptography!

- Sender encodes the message by adding some redundancy + introduces error (intentional noise)
- Receiver decodes the message to remove the error with knowledge of efficient decoding method
- For some codes, we know how to correct errors efficiently, bot not for all!
- Decoding random codes is a hard problem \Rightarrow we can use codes in cryptography!

Linear codes basics

Binary $[n, k]$ linear code \mathcal{C} of length n and dimension k is a subspace of \mathbb{F}_{2}^{n} of dimension k

Binary [$n, k]$ linear code \mathcal{C} of length n and dimension k is a subspace of \mathbb{F}_{2}^{n} of dimension k

- Defined by basis matrix $-k \times n$ generator matrix G

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c}=\mathbf{m G}, \mathbf{m} \in \mathbb{F}_{2}^{k}\right\}
$$

Binary $[n, k]$ linear code \mathcal{C} of length n and dimension k is a subspace of \mathbb{F}_{2}^{n} of dimension k

- Defined by basis matrix $-k \times n$ generator matrix G

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c}=\mathbf{m} \mathbf{G}, \mathbf{m} \in \mathbb{F}_{2}^{k}\right\}
$$

- or by kernel matrix $-(n-k) \times n$ Parity-Check matrix H

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c H}^{\top}=\mathbf{0}\right\}
$$

Binary $[n, k]$ linear code \mathcal{C} of length n and dimension k is a subspace of \mathbb{F}_{2}^{n} of dimension k

- Defined by basis matrix $-k \times n$ generator matrix G

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c}=\mathbf{m} \mathbf{G}, \mathbf{m} \in \mathbb{F}_{2}^{k}\right\}
$$

- or by kernel matrix $-(n-k) \times n$ Parity-Check matrix H

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c H}^{\top}=\mathbf{0}\right\}
$$

- $\mathbf{G H}^{\top}=\mathbf{0}$

Binary $[n, k]$ linear code \mathcal{C} of length n and dimension k is a subspace of \mathbb{F}_{2}^{n} of dimension k

- Defined by basis matrix $-k \times n$ generator matrix G

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c}=\mathbf{m} \mathbf{G}, \mathbf{m} \in \mathbb{F}_{2}^{k}\right\}
$$

- or by kernel matrix $-(n-k) \times n$ Parity-Check matrix H

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c H}^{\top}=\mathbf{0}\right\}
$$

- $\mathbf{G H}^{\top}=\mathbf{0}$
- Systematic form of $\mathbf{G}=\left[\mathbf{I}_{k \times k} \mid \mathbf{T}\right] \Rightarrow \mathbf{H}=\left[\mathbf{T}^{\top} \mid \mathbf{I}_{(n-k) \times(n-k)}\right]$ (store only the redundant part \mathbf{T})

Binary $[n, k]$ linear code \mathcal{C} of length n and dimension k is a subspace of \mathbb{F}_{2}^{n} of dimension k

- Defined by basis matrix $-k \times n$ generator matrix G

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c}=\mathbf{m} \mathbf{G}, \mathbf{m} \in \mathbb{F}_{2}^{k}\right\}
$$

- or by kernel matrix $-(n-k) \times n$ Parity-Check matrix H

$$
\mathcal{C}=\left\{\mathbf{c} \mid \mathbf{c H}^{\top}=\mathbf{0}\right\}
$$

- $\mathbf{G H}^{\top}=\mathbf{0}$
- Systematic form of $\mathbf{G}=\left[\mathbf{I}_{k \times k} \mid \mathbf{T}\right] \Rightarrow \mathbf{H}=\left[\mathbf{T}^{\top} \mid \mathbf{I}_{(n-k) \times(n-k)}\right]$ (store only the redundant part \mathbf{T})
- Elements of \mathcal{C} are called codewords - notation $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots$
- Hamming weight of \mathbf{c} - number of non-zero coordinates of \mathbf{c} - notation hw(c)
- Hamming weight of \mathbf{c} - number of non-zero coordinates of \mathbf{c} - notation hw(c)

Linear codes + Hamming distance basics

- Hamming weight of \mathbf{c} - number of non-zero coordinates of \mathbf{c} - notation hw(c)
- Minimum weight $d(\mathcal{C})=\min _{\mathbf{c} \neq 0}\{h w(\mathbf{c})\}$

Linear codes + Hamming distance basics

- Hamming weight of \mathbf{c} - number of non-zero coordinates of \mathbf{c} - notation hw(c)
- Minimum weight $d(\mathcal{C})=\min _{\mathbf{c} \neq 0}\{h w(\mathbf{c})\}$
- If $d(\mathcal{C})>2 t$ - the code can correct t errors (t bit-flips during transmission)

Linear codes basics

Encoding of messages:

$$
\mathbf{c}=\mathbf{m} \mathbf{G}
$$

Transmission errors introduced:

$$
\mathbf{y}=\mathbf{c}+\mathbf{e}
$$

Decoding: A procedure Decode():
Find \mathbf{c}^{\prime} s.t. $h w\left(\mathbf{c}^{\prime}-\mathbf{y}\right) \leq t$

Linear codes basics

Encoding of messages:

$$
\mathbf{c}=\mathbf{m} \mathbf{G}
$$

Transmission errors introduced:

$$
\mathbf{y}=\mathbf{c}+\mathbf{e}
$$

Decoding: A procedure Decode():

$$
\text { Find } \mathbf{c}^{\prime} \text { s.t. } h w\left(\mathbf{c}^{\prime}-\mathbf{y}\right) \leq t
$$

Another (equivalent) way of looking at it:
Syndrome Decoding:
Given syndrome $\mathbf{s}=\mathbf{y H} \mathbf{H}^{\top}$, find \mathbf{e} of weight at most t such that $\mathbf{s}=\mathbf{e H} \mathbf{H}^{\top}$

Linear codes basics

Encoding of messages:

$$
\mathbf{c}=\mathbf{m G}
$$

Transmission errors introduced:

$$
\mathbf{y}=\mathbf{c}+\mathbf{e}
$$

Decoding: A procedure Decode():

$$
\text { Find } \mathbf{c}^{\prime} \text { s.t. } h w\left(\mathbf{c}^{\prime}-\mathbf{y}\right) \leq t
$$

Another (equivalent) way of looking at it:
Syndrome Decoding:
Given syndrome $\mathbf{s}=\mathbf{y H} \mathbf{H}^{\top}$, find \mathbf{e} of weight at most t such that $\mathbf{s}=\mathbf{e H}^{\top}$

- Syndrome decoding, equivalently, decoding of random codes is NP-hard

McEliece and Niederreiter

cryptosystems

Linear codes for cryptography

- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor - private key + efficient decoder \Rightarrow can decode
- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor - private key + efficient decoder \Rightarrow can decode
- Adversary without trapdoor is faced with a random code and generic, inefficient decoding
- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor - private key + efficient decoder \Rightarrow can decode
- Adversary without trapdoor is faced with a random code and generic, inefficient decoding
- Instantiations:
- McEliece 1978
- irreducible binary Goppa codes - still used today!
- everything else - broken!
- $n=1024, k=524, t=50$
- public key size: 536576 bits, ciphertext size: 1024 bits
- today, security of 60 bits
- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor - private key + efficient decoder \Rightarrow can decode
- Adversary without trapdoor is faced with a random code and generic, inefficient decoding
- Instantiations:
- McEliece 1978
- irreducible binary Goppa codes - still used today!
- everything else - broken!
- $n=1024, k=524, t=50$
- public key size: 536576 bits, ciphertext size: 1024 bits
- today, security of 60 bits
- Niederreiter 1986
- Reed-Solomon codes - broken 1992 by Sidelnikov \& Chestakov
- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor - private key + efficient decoder \Rightarrow can decode
- Adversary without trapdoor is faced with a random code and generic, inefficient decoding
- Instantiations:
- McEliece 1978
- irreducible binary Goppa codes - still used today!
- everything else - broken!
- $n=1024, k=524, t=50$
- public key size: 536576 bits, ciphertext size: 1024 bits
- today, security of 60 bits
- Niederreiter 1986
- Reed-Solomon codes - broken 1992 by Sidelnikov \& Chestakov
- McEliece and Niederreiter constructions are equivalent!

Key generation

Private key: generator matrix \mathbf{G}^{\prime} invertible matrix \mathbf{S} permutation matrix \mathbf{P}

Public key: $\mathbf{G}=\mathbf{S G}{ }^{\prime} \mathbf{P}$

Key generation

Private key: generator matrix \mathbf{G}^{\prime} invertible matrix \mathbf{S} permutation matrix \mathbf{P}

Public key: $\mathbf{G}=\mathbf{S G}{ }^{\prime} \mathbf{P}$

Encryption of message m

Generate random error e of weight-t. Compute ciphertext:

$$
\mathbf{y}=\mathbf{m G}+\mathbf{e}
$$

Key generation

Private key: generator matrix \mathbf{G}^{\prime} invertible matrix \mathbf{S} permutation matrix \mathbf{P}

Public key: $\mathbf{G}=\mathbf{S G}^{\prime} \mathbf{P}$

Encryption of message m

Generate random error \mathbf{e} of weight- t. Compute ciphertext:

$$
\mathbf{y}=\mathbf{m} \mathbf{G}+\mathbf{e}
$$

Decryption of ciphertext y

Compute $\mathbf{y}^{\prime}=\mathbf{y} \mathbf{P}^{-1}$ and

$$
\mathbf{x}=\operatorname{Decode} G\left(\mathbf{y}^{\prime}\right)
$$

Compute $\mathbf{m}=\mathbf{x} \mathbf{S}^{-1}$.

Key generation

Private key: parity-check matrix \mathbf{H}^{\prime} invertible matrix \mathbf{S} permutation matrix \mathbf{P}

Public key: $\mathbf{H}=\mathbf{S H}^{\prime} \mathbf{P}$

Key generation

Private key: generator matrix \mathbf{G}^{\prime} invertible matrix \mathbf{S} permutation matrix \mathbf{P}

Public key: $\mathbf{G}=\mathbf{S G}^{\prime} \mathbf{P}$

Encryption of message m

Generate random error \mathbf{e} of weight- t. Compute ciphertext:

$$
\mathbf{y}=\mathbf{m G}+\mathbf{e}
$$

Decryption of ciphertext y

Compute $\mathbf{y}^{\prime}=\mathbf{y} \mathbf{P}^{-1}$ and

$$
\mathbf{x}=\operatorname{Decode} G\left(\mathbf{y}^{\prime}\right)
$$

Compute $\mathbf{m}=\mathbf{x} \mathbf{S}^{-1}$.

Key generation

Private key: parity-check matrix \mathbf{H}^{\prime} invertible matrix \mathbf{S} permutation matrix \mathbf{P}
Public key: $\mathbf{H}=\mathbf{S H}^{\prime} \mathbf{P}$

Encryption of message \mathbf{m}

Transform m into weight- t error e. Compute ciphertext:

$$
\mathbf{y}=\mathbf{e H}^{\top}
$$

Key generation

Private key: generator matrix \mathbf{G}^{\prime} invertible matrix \mathbf{S} permutation matrix \mathbf{P}
Public key: $\mathbf{G}=\mathbf{S G}^{\prime} \mathbf{P}$

Encryption of message m

Generate random error \mathbf{e} of weight- t. Compute ciphertext:

$$
\mathbf{y}=\mathbf{m G}+\mathbf{e}
$$

Decryption of ciphertext y

Compute $\mathbf{y}^{\prime}=\mathbf{y} \mathbf{P}^{-1}$ and

$$
\mathbf{x}=\operatorname{Decode} G\left(\mathbf{y}^{\prime}\right)
$$

Compute $\mathbf{m}=\mathbf{x} \mathbf{S}^{-1}$.

Key generation

Private key: parity-check matrix \mathbf{H}^{\prime} invertible matrix \mathbf{S} permutation matrix \mathbf{P}
Public key: $\mathbf{H}=\mathbf{S H}^{\prime} \mathbf{P}$

Encryption of message \mathbf{m}

Transform m into weight- t error e. Compute ciphertext:

$$
\mathbf{y}=\mathbf{e H}^{\top}
$$

Decryption of ciphertext y

Compute $\mathbf{y}^{\prime}=\mathbf{y}\left(\mathbf{S}^{\top}\right)^{-1}$, (syndrome) decode \mathbf{y}^{\prime}

$$
\mathbf{y}^{\prime}=\mathbf{e}^{\prime} \mathbf{H}^{\prime \top}
$$

Compute $\mathbf{e}=\mathbf{e}^{\prime}\left(\mathbf{P}^{\top}\right)^{-1}$.

- Variety of constructions
- McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
- Alekhnovich '03 encryption [Alekhnovich '03]
- CFS signature[Courtois, Finiasz \& Sendrier '01]
- Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit \& Girault '07]
- Quasi - cyclic schemes (HQC '17)

Variety of code-based cryptosystems

- Variety of constructions
- McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
- Alekhnovich '03 encryption [Alekhnovich '03]
- CFS signature[Courtois, Finiasz \& Sendrier '01]
- Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit \& Girault '07]
- Quasi - cyclic schemes (HQC '17)
- Variety of metrics
- Hamming metric
- Rank metric
- Lee metric

Variety of code-based cryptosystems

- Variety of constructions
- McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
- Alekhnovich '03 encryption [Alekhnovich '03]
- CFS signature[Courtois, Finiasz \& Sendrier '01]
- Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit \& Girault '07]
- Quasi - cyclic schemes (HQC '17)
- Variety of metrics
- Hamming metric
- Rank metric
- Lee metric
- Variety of codes
- Goppa codes
- LDPC, MDPC (NIST finalist: BIKE '17) and LRPC
- Reed-Solomon codes and Gabidulin codes

NIST code-based KEMs

- July 22nd, 2020 - 3rd round NIST Finalists and Alternates announced
- 4 KEM finalists (5 alternates) - 3 code-based in Hamming metric
- 3 signature finalists (3 alternates) - No code-based
- Decision based mostly on security considerations!
- NIST: Performance wasn't the primary factor in our decisions, but we stayed aware of it

Currently in the competition:

- Classic McEliece
- Based on the Niederreiter cryptosystem with binary Goppa codes
- Considered to be a conservative choice
- No decoding failures

Currently in the competition:

- Classic McEliece
- Based on the Niederreiter cryptosystem with binary Goppa codes
- Considered to be a conservative choice
- No decoding failures
- BIKE
- Based on the Niederreiter cryptosystem with QC-MDPC (Quasi Cyclic Moderate-Density Parity-Check) codes
- Bit-flipping decoding (now constant time)
- Negligible decoding failure rate

Currently in the competition:

- Classic McEliece
- Based on the Niederreiter cryptosystem with binary Goppa codes
- Considered to be a conservative choice
- No decoding failures
- BIKE
- Based on the Niederreiter cryptosystem with QC-MDPC (Quasi Cyclic Moderate-Density Parity-Check) codes
- Bit-flipping decoding (now constant time)
- Negligible decoding failure rate
- HQC
- Random Quasi Cyclic codes ($\mathrm{BCH} \otimes$ repetition codes, now Read-Muller \otimes Reed-Solomon)
- BCH decoding, now RMRS
- Negligible decoding failure rate

Algorithm	Security	pub.key(B)	priv.key(B)	ciphertxt	keygen/s	encaps/s	decaps/s
Classic McEliece348864	Level 1	261120	6492	128	7.99	69325.00	19486.00
Classic McEliece460896	Level 3	524160	13932	240	2.53	38832.67	7627.00
Classic McEliece6688128	Level 5	104992	14120	240	1.87	20083.00	6355.67
Classic McEliece6960119	Level 5	1047319	13948	226	1.95	19673.67	6911.33
Classic McEliece8192128	Level 5	1357824	14120	240	1.84	15075.33	6317.00
BIKE	Level 1	1540	280	1572	3944.00	22975.00	1154.33
BIKE	Level 3	3082	418	3114	1315.89	10289.33	509.83
BIKE	Level 5	5122	580	5154	586.33	5140.67	185.60
HQC-128	Level 1	2249	40	4481	24009.67	12494.67	6728.33
HQC-192	Level 3	4522	40	9026	10973.67	5644.67	3294.00
HQC-256	Level 5	7245	40	14469	5945.33	3055.33	1740.67
KYBER512	Level 1	800	1632	768	93635.67	74457.67	107878.00
KYBER768	Level 3	1184	2400	1088	60386.00	50918.67	68550.33
KYBER1024	Level 5	1568	3168	1568	46629.33	38147.67	49443.33

Security of Code-based crypto Information Set Decoding

Syndrome Decoding:

Given syndrome \mathbf{s}, find \mathbf{e} of weight at most t such that $\mathbf{s}=\mathbf{e H}^{\top}$

- e determines a linear combination of columns of \mathbf{H} equal to \mathbf{s} !

Syndrome Decoding:

Given syndrome s, find \mathbf{e} of weight at most t such that $\mathbf{s}=\mathbf{e H}{ }^{\top}$

- e determines a linear combination of columns of \mathbf{H} equal to \mathbf{s} !
- Straightforward idea: Try out all linear combinations of t columns of H!

Syndrome Decoding:

Given syndrome s, find \mathbf{e} of weight at most t such that $\mathbf{s}=\mathbf{e H}^{\top}$

- e determines a linear combination of columns of \mathbf{H} equal to \mathbf{s} !
- Straightforward idea: Try out all linear combinations of t columns of H!
- Guess and verify approach until correct linear combination is found

Syndrome Decoding:

Given syndrome s, find \mathbf{e} of weight at most t such that $\mathbf{s}=\mathbf{e H}^{\top}$

- e determines a linear combination of columns of \mathbf{H} equal to \mathbf{s} !
- Straightforward idea: Try out all linear combinations of t columns of \mathbf{H} !
- Guess and verify approach until correct linear combination is found
- Cost: $\binom{n}{t}$ column operations

Syndrome Decoding:

Given syndrome s, find \mathbf{e} of weight at most t such that $\mathbf{s}=\mathbf{e H}^{\top}$

- e determines a linear combination of columns of \mathbf{H} equal to \mathbf{s} !
- Straightforward idea: Try out all linear combinations of t columns of \mathbf{H} !
- Guess and verify approach until correct linear combination is found
- Cost: $\binom{n}{t}$ column operations
- We can do better using Birthday paradox $\approx \sqrt{\binom{n}{t}}$ column operations!

Syndrome Decoding:

Given syndrome s, find \mathbf{e} of weight at most t such that $\mathbf{s}=\mathbf{e H}^{\top}$

- e determines a linear combination of columns of \mathbf{H} equal to \mathbf{s} !
- Straightforward idea: Try out all linear combinations of t columns of H!
- Guess and verify approach until correct linear combination is found
- Cost: $\binom{n}{t}$ column operations
- We can do better using Birthday paradox $\approx \sqrt{\binom{n}{t}}$ column operations!
- Even better using Information set decoding!

- Split \mathbf{H} randomly in two parts \mathbf{S} of k columns and \mathbf{K} of $n-k$ columns, and hope that all positions of \mathbf{S} are error-free (i.e. \mathbf{S} is an information set)
- l.e. $\mathbf{H}^{\prime}=\mathbf{H P}=[\mathbf{S} \mid \mathbf{K}] \quad\left(\right.$ Set also $\mathbf{e}^{\prime}=\mathbf{e P}^{\top}$)

- Split \mathbf{H} randomly in two parts \mathbf{S} of k columns and \mathbf{K} of $n-k$ columns, and hope that all positions of \mathbf{S} are error-free (i.e. \mathbf{S} is an information set)
- l.e. $\mathbf{H}^{\prime}=\mathbf{H P}=[\mathbf{S} \mid \mathbf{K}] \quad\left(\right.$ Set also $\mathbf{e}^{\prime}=\mathbf{e P}^{\top}$)
- Probability that guess is correct $\binom{k}{0}\binom{n-k}{t} /\binom{n}{t}$
- Compute \mathbf{U} s.t. \mathbf{K} is Gauss-reduced

- Split \mathbf{H} randomly in two parts \mathbf{S} of k columns and \mathbf{K} of $n-k$ columns, and hope that all positions of \mathbf{S} are error-free (i.e. S is an information set)
- l.e. $\mathbf{H}^{\prime}=\mathbf{H P}=[\mathbf{S} \mid \mathbf{K}] \quad\left(\right.$ Set also $\mathbf{e}^{\prime}=\mathbf{e P}^{\top}$)
- Probability that guess is correct $\binom{k}{0}\binom{n-k}{t} /\binom{n}{t}$
- Compute \mathbf{U} s.t. \mathbf{K} is Gauss-reduced
- If guess is correct, $\mathbf{s} \mathbf{U}^{\top}$ has weight t

- Split \mathbf{H} randomly in two parts \mathbf{S} of k columns and \mathbf{K} of $n-k$ columns, and hope that all positions of \mathbf{S} are error-free (i.e. \mathbf{S} is an information set)
- l.e. $\mathbf{H}^{\prime}=\mathbf{H P}=[\mathbf{S} \mid \mathbf{K}] \quad\left(\right.$ Set also $\mathbf{e}^{\prime}=\mathbf{e P}^{\top}$)
- Probability that guess is correct $\binom{k}{0}\binom{n-k}{t} /\binom{n}{t}$
- Compute \mathbf{U} s.t. \mathbf{K} is Gauss-reduced
- If guess is correct, $\mathbf{s} \mathbf{U}^{\top}$ has weight t
- Cost $n(n-k)$ column operations

- Split \mathbf{H} randomly in two parts \mathbf{S} of k columns and \mathbf{K} of $n-k$ columns, and hope that all positions of \mathbf{S} are error-free (i.e. \mathbf{S} is an information set)
- l.e. $\mathbf{H}^{\prime}=\mathbf{H P}=[\mathbf{S} \mid \mathbf{K}] \quad\left(\right.$ Set also $\mathbf{e}^{\prime}=\mathbf{e P}^{\top}$)
- Probability that guess is correct $\binom{k}{0}\binom{n-k}{t} /\binom{n}{t}$
- Compute U s.t. K is Gauss-reduced
- If guess is correct, $\mathbf{s} \mathbf{U}^{\top}$ has weight t
- Cost $n(n-k)$ column operations
- We can do slightly better by relaxing "error-freeness" of information set [Lee-Brickell '88]
- better probability but more work

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce \mathbf{K} as before

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce \mathbf{K} as before
- If guess is correct, $\exists \overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$ of weight p and $\mathbf{s} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{1} \mathbf{S}_{1}^{\top} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{2} \mathbf{S}_{2}^{\top} \mathbf{U}^{\top}$ has weight $t-2 p$

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce \mathbf{K} as before
- If guess is correct, $\exists \overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$ of weight p and $\mathbf{s} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{1} \mathbf{S}_{1}^{\top} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{2} \mathbf{S}_{2}^{\top} \mathbf{U}^{\top}$ has weight $t-2 p$
- so far, the same as before!

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce \mathbf{K} as before
- If guess is correct, $\exists \overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$ of weight p and $\mathbf{s} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{1} \mathbf{S}_{1}^{\top} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{2} \mathbf{S}_{2}^{\top} \mathbf{U}^{\top}$ has weight $t-2 p$
- so far, the same as before!
- Idea for speedup of finding $\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$: collision search on smaller set of ℓ rows

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce \mathbf{K} as before
- If guess is correct, $\exists \overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$ of weight p and $\mathbf{s} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{1} \mathbf{S}_{1}^{\top} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{2} \mathbf{S}_{2}^{\top} \mathbf{U}^{\top}$ has weight $t-2 p$
- so far, the same as before!
- Idea for speedup of finding $\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$: collision search on smaller set of ℓ rows
- Collision benefits from birthday paradox

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce \mathbf{K} as before
- If guess is correct, $\exists \overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$ of weight p and $\mathbf{s} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{1} \mathbf{S}_{1}^{\top} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{2} \mathbf{S}_{2}^{\top} \mathbf{U}^{\top}$ has weight $t-2 p$
- so far, the same as before!
- Idea for speedup of finding $\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$: collision search on smaller set of ℓ rows
- Collision benefits from birthday paradox
- Smaller set of ℓ rows is like an early abort for non-collision

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce \mathbf{K} as before
- If guess is correct, $\exists \overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$ of weight p and $\mathbf{s} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{1} \mathbf{S}_{1}^{\top} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{2} \mathbf{S}_{2}^{\top} \mathbf{U}^{\top}$ has weight $t-2 p$
- so far, the same as before!
- Idea for speedup of finding $\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$: collision search on smaller set of ℓ rows
- Collision benefits from birthday paradox
- Smaller set of ℓ rows is like an early abort for non-collision
- p and ℓ are small parameters that optimize the complexity

Introducing collision search in ISD [Stern '89; Dumer '91]

- Split \mathbf{H} as before, except hope for the error distribution in the figure the positions of \mathbf{S} contain $2 p$ errors, where p in left half \mathbf{S}_{1}, and p in right half \mathbf{S}_{2} and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce \mathbf{K} as before
- If guess is correct, $\exists \overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$ of weight p and $\mathbf{s} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{1} \mathbf{S}_{1}^{\top} \mathbf{U}^{\top}+\overline{\mathbf{e}}_{2} \mathbf{S}_{2}^{\top} \mathbf{U}^{\top}$ has weight $t-2 p$
- so far, the same as before!
- Idea for speedup of finding $\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}$: collision search on smaller set of ℓ rows
- Collision benefits from birthday paradox
- Smaller set of ℓ rows is like an early abort for non-collision
- p and ℓ are small parameters that optimize the complexity
- Information Set Decoding: [Prange '62] - $2^{0.1208 n}$
- Allow non-perfect information set: [Lee \& Brickell '88]
- Birthday improvement: [Stern, 89], [Dumer '91]
- Initial McEliece parameters broken: [Bernstein, Lange, \& Peters '08]
- Ball-collision decoding [Bernstein, Lange, \& Peters '11]
- Asymptotic exponent improved [May, Meurer, \& Thomae '11]
- Decoding one out of many [Sendrier '11]
- Even better asymptotic exponent [Becker, Joux, May, \& Meurer '12] - $2^{0.1019 n}$
- "Nearest Neighbor" variant [May \& Ozerov '15]
- Sublinear error weight [Canto Torres \& Sendrier '16]
- ISD using Quantum walks (post-quantum) [Kachigar-Tillich '17]
- Nearest Neighbor BJMM [Both-May '17] - $2^{0.0953 n}$
- Post-quantum "Nearest Neighbor" [Kirshanova '18]

Security of Code-based crypto Other attacks

- Dual attacks (lattice style)
- statistical decoding - reduce to LPN
- outperform ISD for low rate codes
- very recent, still work in progress [Carrier et al.'22, Meyer et al.'23]
- Dual attacks (lattice style)
- statistical decoding - reduce to LPN
- outperform ISD for low rate codes
- very recent, still work in progress [Carrier et al.'22, Meyer et al.'23]
- DOOM (Decode One Out of Many)
- Attacker is satisfied with one decoded ciphertext, when given many
- ISD algorithms can be improved by $\mathcal{O}(\sqrt{n})$
- influence on quasi-cyclic codes, MDPC codes
- Dual attacks (lattice style)
- statistical decoding - reduce to LPN
- outperform ISD for low rate codes
- very recent, still work in progress [Carrier et al.'22, Meyer et al.'23]
- DOOM (Decode One Out of Many)
- Attacker is satisfied with one decoded ciphertext, when given many
- ISD algorithms can be improved by $\mathcal{O}(\sqrt{n})$
- influence on quasi-cyclic codes, MDPC codes
- Key recovery attacks
- LDPC codes - polynomial-time (constant density)
- MDPC codes - generic decoding only $\mathcal{O}\left(2^{\sqrt{n}}\right)($ density $\mathcal{O}(\sqrt{n}))$
- Algebraic attacks
- Polynomial-time distinguisher for high-rate alternant and Goppa codes
- No influence on Classic McEliece

Reaction attack [Verheul et al. '98]

Reaction attack [Verheul et al. '98]

$\mathbf{m}_{1}, \mathbf{c}_{1}$

Reaction attack [Verheul et al. '98]

$\mathbf{m}_{1}, \mathbf{c}_{1}$

Reaction attack [Verheul et al. '98]

$\mathbf{m}_{1}, \mathbf{c}_{1}$ \qquad
\mathbf{C}_{1}
$\checkmark \leftarrow \operatorname{Decode}\left(\mathbf{c}_{1}\right)$

Reaction attack [Verheul et al. '98]

$\mathbf{m}_{1}, \mathbf{c}_{1}$

$\mathbf{m}_{2}, \mathbf{C}_{2}$

Reaction attack [Verheul et al. '98]

$\mathbf{m}_{1}, \mathbf{c}_{1}$
$\mathbf{m}_{2}, \mathbf{C}_{2}$

\mathbf{C}_{2}

Reaction attack [Verheul et al. '98]

$\mathbf{m}_{1}, \mathbf{c}_{1}$
$\mathbf{m}_{2}, \mathbf{c}_{2}$

Reaction attack [Verheul et al. '98]

$\mathbf{m}_{1}, \mathbf{c}_{1}$
$\mathbf{m}_{2}, \mathbf{c}_{2}$

Reaction attack [Verheul et al. '98]

$$
\mathbf{m}_{1}, \mathbf{c}_{1}
$$

\mathbf{C}_{1}
$\checkmark \leftarrow \operatorname{Decode}\left(\mathbf{c}_{1}\right)$
$\mathbf{m}_{2}, \mathbf{C}_{2}$

$\checkmark \leftarrow \operatorname{Decode}\left(\mathbf{c}_{2}\right)$
\qquad

A reaction (decoding failure) attack on Niederreiter

- Idea: iteratively test the error vector positions
- For position $i, \mathbf{s}^{\prime} \leftarrow \mathbf{s} \oplus \mathbf{H}_{i}$
$\mathbf{H} \cdot \mathbf{e}=\mathbf{s}$

$$
\left[\begin{array}{cccccccc}
1 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & 1 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
1 \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

A reaction (decoding failure) attack on Niederreiter

- Idea: iteratively test the error vector positions
- For position $i, \mathbf{s}^{\prime} \leftarrow \mathbf{s} \oplus \mathbf{H}_{i}$

$$
\begin{gathered}
\\
\\
\\
{\left[\begin{array}{ccccccccc}
1 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 & \mathbf{H} \\
0 & 1 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & 1 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
1 \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]}
\end{gathered}
$$

A reaction (decoding failure) attack on Niederreiter

- Idea: iteratively test the error vector positions
- For position $i, \mathbf{s}^{\prime} \leftarrow \mathbf{s} \oplus \mathbf{H}_{i}$

$$
\begin{gathered}
\\
\\
\\
\\
{\left[\begin{array}{cccccccc}
1 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & 1 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
1 \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]}
\end{gathered}
$$

A reaction (decoding failure) attack on Niederreiter

- Idea: iteratively test the error vector positions
- For position $i, \mathbf{s}^{\prime} \leftarrow \mathbf{s} \oplus \mathbf{H}_{i}$
$\mathbf{H} \cdot \mathbf{e}=\mathbf{s}^{\prime}$

$$
\left[\begin{array}{cccccccc}
1 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & 1 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
\mathbf{1} \\
1 \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

A reaction (decoding failure) attack on Niederreiter

- Idea: iteratively test the error vector positions
- For position $i, \quad \mathbf{s}^{\prime} \leftarrow \mathbf{s} \oplus \mathbf{H}_{i}$
- Ask a decoding failure oracle whether t is exceeded
- A redundant error $\left(\mathbf{e}_{i}=1\right)$ cancels out
- An additional error $\left(\mathbf{e}_{i}=0\right)$ leads to failure

$$
\mathbf{H} \cdot \mathbf{e}=\mathbf{s}
$$

A reaction (decoding failure) attack on Niederreiter

- Idea: iteratively test the error vector positions
- For position $i, \mathbf{s}^{\prime} \leftarrow \mathbf{s} \oplus \mathbf{H}_{i}$
- Ask a decoding failure oracle whether t is exceeded
- A redundant error $\left(\mathbf{e}_{i}=1\right)$ cancels out
- An additional error $\left(\mathbf{e}_{i}=0\right)$ leads to failure
- Effort: k queries
- Attacker only needs to recover an information set
$\mathbf{H} \cdot \mathbf{e}=\mathbf{s}$

A reaction (decoding failure) attack on Niederreiter

- Idea: iteratively test the error vector positions
- For position $i, \mathbf{s}^{\prime} \leftarrow \mathbf{s} \oplus \mathbf{H}_{i}$
- Ask a decoding failure oracle whether t is exceeded
- A redundant error $\left(\mathbf{e}_{i}=1\right)$ cancels out
- An additional error $\left(\mathbf{e}_{i}=0\right)$ leads to failure
- Effort: k queries
- Attacker only needs to recover an information set
- Even lees by iterative chunking
- Even less if attacker has some computational

$$
\begin{gathered}
\\
\\
{\left[\begin{array}{ccccccccc}
1 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & 1 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{e} \\
\vdots \\
1 \\
1 \\
1 \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0
\end{array}\right]}
\end{gathered}
$$ power to solve a smaller Information Set Decoding problem

Side-channel attacks

- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
- easy to turn into a message recovery attack (as seen above)
- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
- easy to turn into a message recovery attack (as seen above)
- Recently first key recovery attack on McEliece [Guo,Johansson,Johansson '22]
- Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.'23]
- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
- easy to turn into a message recovery attack (as seen above)
- Recently first key recovery attack on McEliece [Guo,Johansson, Johansson '22]
- Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.'23]
- Decoding algorithms are difficult to make constant time
- Timing attacks on McEliece, HQC, BIKE
- Rejection sampling exploited in HQC, BIKE
- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
- easy to turn into a message recovery attack (as seen above)
- Recently first key recovery attack on McEliece [Guo,Johansson,Johansson '22]
- Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.'23]
- Decoding algorithms are difficult to make constant time
- Timing attacks on McEliece, HQC, BIKE
- Rejection sampling exploited in HQC, BIKE
- Side-channel attacks - biggest issue currently for post-quantum schemes
- For code-based schemes still not many countermeasures available
- Protection influences performance significantly
- Cheap and effective countermeasures are necessary
- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
- easy to turn into a message recovery attack (as seen above)
- Recently first key recovery attack on McEliece [Guo,Johansson,Johansson '22]
- Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.'23]
- Decoding algorithms are difficult to make constant time
- Timing attacks on McEliece, HQC, BIKE
- Rejection sampling exploited in HQC, BIKE
- Side-channel attacks - biggest issue currently for post-quantum schemes
- For code-based schemes still not many countermeasures available
- Protection influences performance significantly
- Cheap and effective countermeasures are necessary

NIST's additional round on signatures

Code-based candidates

- Enhanced pqsigRM
- FuLeeca
- Wave
- CROSS
- SDitH
- LESS
- MEDS
- ALTEQ

Code-based candidates

- Enhanced pqsigRM
- FuLeeca
- Wave
- CROSS
- SDitH
- LESS
- MEDS
- ALTEQ
- 5 Fiat-Shamir signatures
- 3 of them based on equivalence problem

Digital signatures via the Fiat-Shamir transform

Σ-protocol	\mathcal{P} (pk, sk)		$\mathcal{V}(\mathrm{pk})$
	com $\leftarrow \mathcal{P}_{0}{ }^{r}(\mathrm{sk})$	com	
		ch	ch $\stackrel{\$}{\leftarrow} \mathrm{ChS}^{r}\left(1^{k}\right)$
	resp $\leftarrow \mathcal{P}_{1}{ }^{r}$ (sk, com, ch $)$	resp	
			$b \leftarrow \mathrm{Vf}^{r}(\mathrm{pk}$, com, ch, resp $)$

Code equivalence problem $\operatorname{CE}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$:

Given \mathcal{C}_{0} and \mathcal{C}_{1}, find (if any) an isometry (preserves metric) ϕ s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$

Code equivalence problem $\operatorname{CE}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$:

Given \mathcal{C}_{0} and \mathcal{C}_{1}, find (if any) an isometry (preserves metric) ϕ s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$
Hard code-based equivalence problems in NIST's 4th round?

- Code equivalence - LESS - Baldi et. al (Biasse et al.'20, LESS-FM - Barenghi et al.'21)
- Hamming metric, linear codes
- isometry defined by permutation matrix

Code equivalence problem $\operatorname{CE}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$:

Given \mathcal{C}_{0} and \mathcal{C}_{1}, find (if any) an isometry (preserves metric) ϕ s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$
Hard code-based equivalence problems in NIST's 4th round?

- Code equivalence - LESS - Baldi et. al (Biasse et al.'20, LESS-FM - Barenghi et al.'21)
- Hamming metric, linear codes
- isometry defined by permutation matrix
- Matrix code equivalence - MEDS - with T.Chou, R.Niederhagen, E.Persichetti, T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22

Code equivalence problem $\operatorname{CE}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$:

Given \mathcal{C}_{0} and \mathcal{C}_{1}, find (if any) an isometry (preserves metric) ϕ s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$
Hard code-based equivalence problems in NIST's 4th round?

- Code equivalence - LESS - Baldi et. al (Biasse et al.'20, LESS-FM - Barenghi et al.'21)
- Hamming metric, linear codes
- isometry defined by permutation matrix
- Matrix code equivalence - MEDS - with T.Chou, R.Niederhagen, E.Persichetti, T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22
- Rank metric, matrix codes
- isometry defined by non-singular matrices A, B

Code equivalence problem $\operatorname{CE}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$:

Given \mathcal{C}_{0} and \mathcal{C}_{1}, find (if any) an isometry (preserves metric) ϕ s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$
Hard code-based equivalence problems in NIST's 4th round?

- Code equivalence - LESS - Baldi et. al (Biasse et al.'20, LESS-FM - Barenghi et al.'21)
- Hamming metric, linear codes
- isometry defined by permutation matrix
- Matrix code equivalence - MEDS - with T.Chou, R.Niederhagen, E.Persichetti, T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22
- Rank metric, matrix codes
- isometry defined by non-singular matrices A,B
- Alternate trilinear form equivalence - ALTEQ - Blase et al. (Tang et al.'22)
- Rank metric, skew-symmetric matrix codes
- isometry defined by non-singular matrix \mathbf{A}

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \phi\right)$

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \phi\right)$	$\mathcal{V}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \phi\right)$	$\mathcal{V}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

\mathcal{C}^{\prime}

$\mathcal{P}\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \phi\right)$	$\mathcal{V}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$
$\operatorname{com} \leftarrow \mathcal{C}^{\prime}$	

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

\mathcal{C}^{\prime}

$\mathcal{P}\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \phi\right)$	$\mathcal{V}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$
$\operatorname{com} \leftarrow \mathcal{C}^{\prime}$	

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \phi\right)$		$\mathcal{V}\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$
$\operatorname{com} \leftarrow \mathcal{C}^{\prime}$	com	

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$$
\begin{gathered}
\mathcal{C}_{0} \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\mathcal{C}_{1}
\end{gathered}
$$

\mathcal{C}^{\prime}

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Σ protocol from Code Equivalence Problems

Let ϕ be an isometry s.t. $\mathcal{C}_{1}=\phi\left(\mathcal{C}_{0}\right)$.
Given $\mathcal{C}_{0}, \mathcal{C}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Homogenous Quadratic Maps Linear Equivalence (hQMLE) problem is well known equivalence problem from multivariate crypto (instance of Isomorphism of Polynomials)

Relation between problems

- Homogenous Quadratic Maps Linear Equivalence (hQMLE) problem is well known equivalence problem from multivariate crypto (instance of Isomorphism of Polynomials)

Level	param. set	public key size (KB)	signature size (KB)
I	LESS-1b	13.7	8.4
I	MEDS-9923	9.9	9.9
I	ALTEQ Balanced	8	16
III	LESS-3b	34.5	18.4
III	MEDS-41711	41.7	41
III	ALTEQ Balanced	32	48

- Standard optimizations: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree

Parameters and performance of LESS, MEDS, ALTEQ

Level	param. set	public key size (KB)	signature size (KB)
I	LESS-1b	13.7	8.4
I	MEDS-9923	9.9	9.9
I	ALTEQ Balanced	8	16
III	LESS-3b	34.5	18.4
III	MEDS-41711	41.7	41
III	ALTEQ Balanced	32	48

- Standard optimizations: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
- New in MEDS: Public Key Compression
- generate public key partially from seed \Rightarrow signature size reduction
- Work in progress: use similar idea during signing

Level	param. set	public key size (KB)	signature size (KB)
I	LESS-1b	13.7	8.4
I	MEDS-9923	9.9	9.9
I	ALTEQ Balanced	8	16
III	LESS-3b	34.5	18.4
III	MEDS-41711	41.7	41
III	ALTEQ Balanced	32	48

- Standard optimizations: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
- New in MEDS: Public Key Compression
- generate public key partially from seed \Rightarrow signature size reduction
- Work in progress: use similar idea during signing
- Brand new in LESS: Information Set formulation, Canonical forms
- significant signature reduction

Thank you for listening!

䡌Fortanix
(\%) QRL

KEYFACTOR
THALES
[N Noreg
'd-trust.

ᄃansartism

