Post-Quantum

Cryptography Conference

Code-based Cryptography

Simona Samardjiska

Assistant Professor at Digital Security Group, ICIS, Radboud University

Code-based cryptography

Simona Samardjiska Digital Security Group, Radboud University simonas@cs.ru.nl

Post-Quantum Cryptography Conference, November 07, 2023

What is code-based cryptography?

(only secure hash function needed)

Lattice-based cryptosystems – signatures/encryption/KEMs (many different hard problems – SIS, SVP, LWE)

• McEliece cryptosystem is as old as RSA! ...

- McEliece cryptosystem is as old as RSA! ...
- But, huge public key $\approx 70 \textit{KB}$ for 80 bits security

- McEliece cryptosystem is as old as RSA!
- But, huge public key $\approx 70 \textit{KB}$ for 80 bits security
- Classic McEliece $\approx 260 KB$ for NIST level 1 security

Noisy channels introduce errors to transmitted digital messages

• satellite to earth communication, mobile phone data, humans typing on keyboard, ...

Noisy channels introduce errors to transmitted digital messages

• satellite to earth communication, mobile phone data, humans typing on keyboard, ...

Systems need a mechanism for correction of errors – They use error correcting codes

Noisy channels introduce errors to transmitted digital messages

• satellite to earth communication, mobile phone data, humans typing on keyboard, ...

Systems need a mechanism for correction of errors - They use error correcting codes

• Sender encodes the message by adding some redundancy

Noisy channels introduce errors to transmitted digital messages

• satellite to earth communication, mobile phone data, humans typing on keyboard, ...

Systems need a mechanism for correction of errors – They use error correcting codes

- Sender encodes the message by adding some redundancy
- · Receiver decodes the message to remove the error

- Sender encodes the message by adding some redundancy + introduces error (intentional noise)
- Receiver decodes the message to remove the error with knowledge of efficient decoding method
- For some codes, we know how to correct errors efficiently, bot not for all!

- Sender encodes the message by adding some redundancy + introduces error (intentional noise)
- Receiver decodes the message to remove the error with knowledge of efficient decoding method
- For some codes, we know how to correct errors efficiently, bot not for all!
- Decoding random codes is a hard problem \Rightarrow we can use codes in cryptography!

- Sender encodes the message by adding some redundancy + introduces error (intentional noise)
- Receiver decodes the message to remove the error with knowledge of efficient decoding method
- For some codes, we know how to correct errors efficiently, bot not for all!
- Decoding random codes is a hard problem \Rightarrow we can use codes in cryptography!

Binary [n, k] linear code C of length n and dimension k is a subspace of \mathbb{F}_2^n of dimension k

Binary [n, k] linear code C of length n and dimension k is a subspace of \mathbb{F}_2^n of dimension k

• Defined by basis matrix – $k \times n$ generator matrix **G**

$$\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} = \mathbf{mG}, \mathbf{m} \in \mathbb{F}_2^k \}$$

Binary [n, k] linear code C of length n and dimension k is a subspace of \mathbb{F}_2^n of dimension k

• Defined by basis matrix – $k \times n$ generator matrix **G**

$$\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} = \mathbf{mG}, \mathbf{m} \in \mathbb{F}_2^k \}$$

• or by kernel matrix – $(n - k) \times n$ Parity-Check matrix H

 $\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} \mathbf{H}^{ op} = \mathbf{0} \}$

Binary [n, k] linear code C of length n and dimension k is a subspace of \mathbb{F}_2^n of dimension k

• Defined by basis matrix – $k \times n$ generator matrix **G**

$$\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} = \mathbf{mG}, \mathbf{m} \in \mathbb{F}_2^k \}$$

• or by kernel matrix – $(n - k) \times n$ Parity-Check matrix H

 $\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} \mathbf{H}^{\top} = \mathbf{0} \}$

• $\mathbf{G}\mathbf{H}^{\top} = \mathbf{0}$

Binary [n, k] linear code C of length n and dimension k is a subspace of \mathbb{F}_2^n of dimension k

• Defined by basis matrix $-k \times n$ generator matrix **G**

$$\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} = \mathbf{mG}, \mathbf{m} \in \mathbb{F}_2^k \}$$

• or by kernel matrix – $(n - k) \times n$ Parity-Check matrix H

 $\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} \mathbf{H}^{ op} = \mathbf{0} \}$

- $\mathbf{G}\mathbf{H}^{ op} = \mathbf{0}$
- Systematic form of $\mathbf{G} = [\mathbf{I}_{k \times k} | \mathbf{T}] \Rightarrow \mathbf{H} = [\mathbf{T}^\top | \mathbf{I}_{(n-k) \times (n-k)}]$ (store only the redundant part \mathbf{T})

Binary [n, k] linear code C of length n and dimension k is a subspace of \mathbb{F}_2^n of dimension k

• Defined by basis matrix – $k \times n$ generator matrix **G**

$$\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} = \mathbf{mG}, \mathbf{m} \in \mathbb{F}_2^k \}$$

• or by kernel matrix – $(n - k) \times n$ Parity-Check matrix H

$$\mathcal{C} = \{ \mathbf{c} \mid \mathbf{c} \mathbf{H}^\top = \mathbf{0} \}$$

- $\mathbf{G}\mathbf{H}^{\top} = \mathbf{0}$
- Systematic form of $\mathbf{G} = [\mathbf{I}_{k \times k} | \mathbf{T}] \Rightarrow \mathbf{H} = [\mathbf{T}^\top | \mathbf{I}_{(n-k) \times (n-k)}]$ (store only the redundant part \mathbf{T})
- Elements of C are called **codewords** notation **c**₁, **c**₂,...

• Hamming weight of c – number of non-zero coordinates of c - notation hw(c)

• Hamming weight of c – number of non-zero coordinates of c - notation hw(c)

- Hamming weight of c number of non-zero coordinates of c notation hw(c)
- Minimum weight $d(\mathcal{C}) = \min_{\mathbf{c}\neq \mathbf{0}} \{hw(\mathbf{c})\}$

- Hamming weight of c number of non-zero coordinates of c notation hw(c)
- Minimum weight $d(\mathcal{C}) = \min_{\mathbf{c}\neq \mathbf{0}} \{hw(\mathbf{c})\}$
- If $d(\mathcal{C}) > 2t$ the code can correct t errors (t bit-flips during transmission)

Encoding of messages:

 $\mathbf{c} = \mathbf{m}\mathbf{G}$

Transmission errors introduced:

 $\mathbf{y} = \mathbf{c} + \mathbf{e}$

Decoding: A procedure *Decode*():

Find \mathbf{c}' s.t. $hw(\mathbf{c}' - \mathbf{y}) \leq t$

Encoding of messages:

 $\mathbf{c} = \mathbf{m}\mathbf{G}$

Transmission errors introduced:

 $\mathbf{y} = \mathbf{c} + \mathbf{e}$

Decoding: A procedure *Decode*():

Find \mathbf{c}' s.t. $hw(\mathbf{c}' - \mathbf{y}) \leq t$

Another (equivalent) way of looking at it:

Syndrome Decoding:

Given syndrome $\mathbf{s} = \mathbf{y}\mathbf{H}^{\top}$, find \mathbf{e} of weight at most t such that $\mathbf{s} = \mathbf{e}\mathbf{H}^{\top}$

Encoding of messages:

 $\mathbf{c} = \mathbf{m}\mathbf{G}$

Transmission errors introduced:

 $\mathbf{y} = \mathbf{c} + \mathbf{e}$

Decoding: A procedure *Decode()*:

Find \mathbf{c}' s.t. $hw(\mathbf{c}' - \mathbf{y}) \leq t$

Another (equivalent) way of looking at it:

Syndrome Decoding:

Given syndrome $\mathbf{s} = \mathbf{y}\mathbf{H}^{\top}$, find \mathbf{e} of weight at most t such that $\mathbf{s} = \mathbf{e}\mathbf{H}^{\top}$

• Syndrome decoding, equivalently, decoding of random codes is NP-hard

McEliece and Niederreiter cryptosystems

• Idea for cryptographic use: Scramble efficiently decodable codes to hide structure

- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor private key + efficient decoder \Rightarrow can decode

- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor private key + efficient decoder \Rightarrow can decode
- Adversary without trapdoor is faced with a random code and generic, inefficient decoding

- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor private key + efficient decoder \Rightarrow can decode
- Adversary without trapdoor is faced with a random code and generic, inefficient decoding
- Instantiations:
 - McEliece 1978
 - irreducible binary Goppa codes still used today!
 - everything else broken!
 - $n = 1024, \ k = 524, \ t = 50$
 - public key size: 536576 bits, ciphertext size: 1024 bits
 - today, security of 60 bits

- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor private key + efficient decoder \Rightarrow can decode
- Adversary without trapdoor is faced with a random code and generic, inefficient decoding
- Instantiations:
 - McEliece 1978
 - irreducible binary Goppa codes still used today!
 - everything else broken!
 - $n = 1024, \ k = 524, \ t = 50$
 - public key size: 536576 bits, ciphertext size: 1024 bits
 - today, security of 60 bits
 - Niederreiter 1986
 - Reed-Solomon codes broken 1992 by Sidelnikov & Chestakov

- Idea for cryptographic use: Scramble efficiently decodable codes to hide structure
- Legitimate user has trapdoor private key + efficient decoder \Rightarrow can decode
- Adversary without trapdoor is faced with a random code and generic, inefficient decoding
- Instantiations:
 - McEliece 1978
 - irreducible binary Goppa codes still used today!
 - everything else broken!
 - $n = 1024, \ k = 524, \ t = 50$
 - public key size: 536576 bits, ciphertext size: 1024 bits
 - today, security of 60 bits
 - Niederreiter 1986
 - Reed-Solomon codes broken 1992 by Sidelnikov & Chestakov
 - McEliece and Niederreiter constructions are equivalent!
Private key: generator matrix G' invertible matrix S permutation matrix P

Public key: G = SG'P

Private key: generator matrix G' invertible matrix S permutation matrix P

Public key: G = SG'P

Encryption of message m

Generate random error **e** of weight-*t*. Compute ciphertext:

$$\mathbf{y} = \mathbf{m}\mathbf{G} + \mathbf{e}$$

Private key: generator matrix G' invertible matrix S permutation matrix P

Public key: G = SG'P

Key generation

Private key: parity-check matrix H' invertible matrix S permutation matrix P

Public key: H = SH'P

Encryption of message m

Generate random error **e** of weight-*t*. Compute ciphertext:

 $\mathbf{y} = \mathbf{m}\mathbf{G} + \mathbf{e}$

Decryption of ciphertext y

Compute $\mathbf{y}' = \mathbf{y} \mathbf{P}^{-1}$ and

$$\mathbf{x} = DecodeG(\mathbf{y}')$$

Compute $\mathbf{m} = \mathbf{x}\mathbf{S}^{-1}$.

Private key: generator matrix G' invertible matrix S permutation matrix P

Public key: G = SG'P

Key generation

Private key: parity-check matrix H' invertible matrix S permutation matrix P

Public key: H = SH'P

Encryption of message m

Generate random error **e** of weight-*t*. Compute ciphertext:

 $\mathbf{y} = \mathbf{m}\mathbf{G} + \mathbf{e}$

Decryption of ciphertext y

Compute $\mathbf{y}' = \mathbf{y} \mathbf{P}^{-1}$ and

$$\mathbf{x} = DecodeG(\mathbf{y}')$$

Compute $\mathbf{m} = \mathbf{x}\mathbf{S}^{-1}$.

Encryption of message m

Transform **m** into weight-*t* error **e**. Compute ciphertext:

$$\mathbf{y} = \mathbf{e}\mathbf{H}^{ op}$$

Private key: generator matrix G' invertible matrix S permutation matrix P

Public key: G = SG'P

Encryption of message m

Generate random error **e** of weight-*t*. Compute ciphertext:

 $\mathbf{y} = \mathbf{m}\mathbf{G} + \mathbf{e}$

Decryption of ciphertext y

Compute $\mathbf{y}' = \mathbf{y} \mathbf{P}^{-1}$ and

$$\mathbf{x} = DecodeG(\mathbf{y}')$$

Compute $\mathbf{m} = \mathbf{x}\mathbf{S}^{-1}$.

Key generation

Private key: parity-check matrix H' invertible matrix S permutation matrix P

Public key: H = SH'P

Encryption of message m

Transform **m** into weight-t error **e**. Compute ciphertext:

$$\mathsf{y} = \mathsf{e}\mathsf{H}^ op$$

Decryption of ciphertext y

Compute $\boldsymbol{y}' = \boldsymbol{y}(\boldsymbol{S}^{\top})^{-1}$, (syndrome) decode \boldsymbol{y}'

$$\mathbf{y}' = \mathbf{e}' \mathbf{H}'^{ op}$$

Compute $\mathbf{e} = \mathbf{e}'(\mathbf{P}^{\top})^{-1}$.

Variety of code-based cryptosystems

- Variety of constructions
 - McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
 - Alekhnovich '03 encryption [Alekhnovich '03]
 - CFS signature[Courtois, Finiasz & Sendrier '01]
 - Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit & Girault '07]
 - Quasi cyclic schemes (HQC '17)

Variety of code-based cryptosystems

- Variety of constructions
 - McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
 - Alekhnovich '03 encryption [Alekhnovich '03]
 - CFS signature[Courtois, Finiasz & Sendrier '01]
 - Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit & Girault '07]
 - Quasi cyclic schemes (HQC '17)

• Variety of metrics

- Hamming metric
- Rank metric
- Lee metric

Variety of code-based cryptosystems

• Variety of constructions

- McEliece and Niederreiter encryption schemes (NIST finalist: Classic McEliece '17)
- Alekhnovich '03 encryption [Alekhnovich '03]
- CFS signature[Courtois, Finiasz & Sendrier '01]
- Fiat-Shamir signatures [Stern '93; Veron '95; Cayrel, Gaborit & Girault '07]
- Quasi cyclic schemes (HQC '17)

• Variety of metrics

- Hamming metric
- Rank metric
- Lee metric
- Variety of codes
 - Goppa codes
 - LDPC, MDPC (NIST finalist: BIKE '17) and LRPC
 - Reed-Solomon codes and Gabidulin codes

NIST code-based KEMs

NIST finalists

- July 22nd, 2020 3rd round NIST Finalists and Alternates announced
- 4 KEM finalists (5 alternates) 3 code-based in Hamming metric
- 3 signature finalists (3 alternates) No code-based
- Decision based mostly on security considerations!
- NIST: Performance wasn't the primary factor in our decisions, but we stayed aware of it

Encryption/KEMs				Signatures			
Crystals-Kyber	Lattice	MLWE		CRYSTALS-Dilithium	Lattice	Fiat-Shamir	
Saber	Lattice	MLWR		qTesla:	Lattice	Fiat-Shamir	
FrodoKEM	Lattice	LWE		Falcon	Lattice	Hash then sig	
Round 5	Lattice	LWR/RIW	8				
LAC	Lattice	REWE		SPHINCS+	Symm	Hash	
NewHope	Lattice	RUWE		Picnic	Symm	ZKP	
Three Bears	Lattice	IMUWE					
NTRU	Lattice	NTRU		LUOV	MultVar	VOV	
NTRUprime	Lattice	NTRU		Rainbow	MultVar	UOV	
				GeMMS	MultVar	HFEV-	
SIKE	Isogeny	sogeny Isogeny		MQD55	MultVor	Fiat Shamir	
Classic McEliece	Codes	Goppa					
NTS-KEM	Codes	Goppe	(merged)				
BIKE	Codes	short Hamming					
HQC	Codes	short Hamming					
LEDAcrypt	Codes	short					
ROLLO	Codes	low rank					
RQC	Codes	low rank					

Currently in the competition:

• Classic McEliece

- Based on the Niederreiter cryptosystem with binary Goppa codes
- Considered to be a conservative choice
- No decoding failures

Currently in the competition:

• Classic McEliece

- Based on the Niederreiter cryptosystem with binary Goppa codes
- Considered to be a conservative choice
- No decoding failures

• BIKE

- Based on the Niederreiter cryptosystem with QC-MDPC (Quasi Cyclic Moderate-Density Parity-Check) codes
- Bit-flipping decoding (now constant time)
- Negligible decoding failure rate

Currently in the competition:

• Classic McEliece

- Based on the Niederreiter cryptosystem with binary Goppa codes
- Considered to be a conservative choice
- No decoding failures

• BIKE

- Based on the Niederreiter cryptosystem with QC-MDPC (Quasi Cyclic Moderate-Density Parity-Check) codes
- Bit-flipping decoding (now constant time)
- Negligible decoding failure rate
- HQC
 - Random Quasi Cyclic codes (BCH \otimes repetition codes, now Read-Muller \otimes Reed-Solomon)
 - BCH decoding, now RMRS
 - Negligible decoding failure rate

Algorithm	Security	pub.key(B)	priv.key(B)	ciphert×t	keygen/s	encaps/s	decaps/s
Classic McEliece348864	Level 1	261 120	6 492	128	7.99	69325.00	19486.00
Classic McEliece460896	Level 3	524 160	13 932	240	2.53	38832.67	7627.00
Classic McEliece6688128	Level 5	104 992	14 120	240	1.87	20083.00	6355.67
Classic McEliece6960119	Level 5	1 047 319	13 948	226	1.95	19673.67	6911.33
Classic McEliece8192128	Level 5	1 357 824	14 120	240	1.84	15075.33	6317.00
BIKE	Level 1	1 540	280	1 572	3944.00	22975.00	1154.33
BIKE	Level 3	3 082	418	3 114	1315.89	10289.33	509.83
BIKE	Level 5	5 122	580	5 154	586.33	5140.67	185.60
HQC-128	Level 1	2 249	40	4 481	24009.67	12494.67	6728.33
HQC-192	Level 3	4 522	40	9 026	10973.67	5644.67	3294.00
HQC-256	Level 5	7 245	40	14 469	5945.33	3055.33	1740.67
KYBER512	Level 1	800	1 632	768	93635.67	74457.67	107878.00
KYBER768	Level 3	1 184	2 400	1 088	60386.00	50918.67	68550.33
KYBER1024	Level 5	1 568	3 168	1 568	46629.33	38147.67	49443.33

Security of Code-based crypto – Information Set Decoding

• e determines a linear combination of columns of H equal to s!

- e determines a linear combination of columns of H equal to s!
- Straightforward idea: Try out all linear combinations of t columns of H!

Syndrome Decoding: Given syndrome s, find e of weight at most t such that $\mathbf{s} = \mathbf{e}\mathbf{H}^{\top}$

- e determines a linear combination of columns of H equal to s!
- Straightforward idea: Try out all linear combinations of t columns of H!
 - Guess and verify approach until correct linear combination is found

Syndrome Decoding:

Given syndrome s, find e of weight at most t such that $\mathbf{s} = \mathbf{e}\mathbf{H}^{\top}$

- e determines a linear combination of columns of H equal to s!
- Straightforward idea: Try out all linear combinations of t columns of H!
 - Guess and verify approach until correct linear combination is found
 - **Cost**: $\binom{n}{t}$ column operations

Syndrome Decoding:

Given syndrome s, find e of weight at most t such that $s = eH^{\top}$

- e determines a linear combination of columns of H equal to s!
- Straightforward idea: Try out all linear combinations of t columns of H!
 - · Guess and verify approach until correct linear combination is found
 - **Cost**: $\binom{n}{t}$ column operations
- We can do better using **Birthday paradox** $\approx \sqrt{\binom{n}{t}}$ column operations!

Syndrome Decoding:

Given syndrome s, find e of weight at most t such that $s = eH^{\top}$

- e determines a linear combination of columns of H equal to s!
- Straightforward idea: Try out all linear combinations of t columns of H!
 - · Guess and verify approach until correct linear combination is found
 - **Cost**: $\binom{n}{t}$ column operations
- We can do better using **Birthday paradox** $\approx \sqrt{\binom{n}{t}}$ column operations!
- Even better using Information set decoding!

- Split H randomly in two parts S of k columns and K of n k columns, and hope that all positions of S are error-free (i.e. S is an information set)
 - I.e. $\mathbf{H}' = \mathbf{HP} = [\mathbf{S} \mid \mathbf{K}]$ (Set also $\mathbf{e}' = \mathbf{eP}^{\top}$)

- Split H randomly in two parts S of k columns and K of n k columns, and hope that all positions of S are error-free (i.e. S is an information set)
 - I.e. $\mathbf{H}' = \mathbf{HP} = [\mathbf{S} \mid \mathbf{K}]$ (Set also $\mathbf{e}' = \mathbf{eP}^{\top}$)
 - Probability that guess is correct $\binom{k}{0}\binom{n-k}{t}/\binom{n}{t}$
- Compute ${\boldsymbol{\mathsf{U}}}$ s.t. ${\boldsymbol{\mathsf{K}}}$ is Gauss-reduced

- Split H randomly in two parts S of k columns and K of n k columns, and hope that all positions of S are error-free (i.e. S is an information set)
 - I.e. $\mathbf{H}' = \mathbf{HP} = [\mathbf{S} \mid \mathbf{K}]$ (Set also $\mathbf{e}' = \mathbf{eP}^{\top}$)
 - Probability that guess is correct $\binom{k}{0}\binom{n-k}{t}/\binom{n}{t}$
- Compute ${\boldsymbol{\mathsf{U}}}$ s.t. ${\boldsymbol{\mathsf{K}}}$ is Gauss-reduced
- If guess is correct, \mathbf{sU}^{\top} has weight t

- Split H randomly in two parts S of k columns and K of n k columns, and hope that all positions of S are error-free (i.e. S is an information set)
 - I.e. $\mathbf{H}' = \mathbf{HP} = [\mathbf{S} \mid \mathbf{K}]$ (Set also $\mathbf{e}' = \mathbf{eP}^{\top}$)
 - Probability that guess is correct $\binom{k}{0}\binom{n-k}{t}/\binom{n}{t}$
- Compute ${\boldsymbol{\mathsf{U}}}$ s.t. ${\boldsymbol{\mathsf{K}}}$ is Gauss-reduced
- If guess is correct, \mathbf{sU}^{\top} has weight t
 - Cost n(n-k) column operations

- Split H randomly in two parts S of k columns and K of n k columns, and hope that all positions of S are error-free (i.e. S is an information set)
 - I.e. $\mathbf{H}' = \mathbf{HP} = [\mathbf{S} \mid \mathbf{K}]$ (Set also $\mathbf{e}' = \mathbf{eP}^{\top}$)
 - Probability that guess is correct $\binom{k}{0}\binom{n-k}{t}/\binom{n}{t}$
- Compute ${\boldsymbol{\mathsf{U}}}$ s.t. ${\boldsymbol{\mathsf{K}}}$ is Gauss-reduced
- If guess is correct, \mathbf{sU}^{\top} has weight t
 - Cost n(n-k) column operations
- We can do slightly better by relaxing "error-freeness" of information set [Lee-Brickell '88]
 - better probability but more work

• Split **H** as before, except hope for the error distribution in the figure the positions of **S** contain 2p errors, where p in left half **S**₁, and p in right half **S**₂ and there are no errors on chosen ℓ positions outside of information set

• Split **H** as before, except hope for the error distribution in the figure the positions of **S** contain 2p errors, where p in left half **S**₁, and p in right half **S**₂ and there are no errors on chosen ℓ positions outside of information set

- Split **H** as before, except hope for the error distribution in the figure the positions of **S** contain 2p errors, where p in left half **S**₁, and p in right half **S**₂ and there are no errors on chosen ℓ positions outside of information set
- Gauss-reduce K as before

- Split H as before, except hope for the error distribution in the figure the positions of S contain 2p errors, where p in left half S₁, and p in right half S₂ and there are no errors on chosen l positions outside of information set
- Gauss-reduce K as before
- If guess is correct, $\exists \bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2$ of weight p and $\mathbf{s}\mathbf{U}^\top + \bar{\mathbf{e}}_1\mathbf{S}_1^\top\mathbf{U}^\top + \bar{\mathbf{e}}_2\mathbf{S}_2^\top\mathbf{U}^\top$ has weight t 2p

- Split H as before, except hope for the error distribution in the figure the positions of S contain 2p errors, where p in left half S₁, and p in right half S₂ and there are no errors on chosen l positions outside of information set
- Gauss-reduce K as before
- If guess is correct, $\exists \bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2$ of weight p and $\mathbf{s}\mathbf{U}^\top + \bar{\mathbf{e}}_1\mathbf{S}_1^\top\mathbf{U}^\top + \bar{\mathbf{e}}_2\mathbf{S}_2^\top\mathbf{U}^\top$ has weight t 2p
- so far, the same as before!

- Split H as before, except hope for the error distribution in the figure the positions of S contain 2p errors, where p in left half S₁, and p in right half S₂ and there are no errors on chosen l positions outside of information set
- Gauss-reduce ${\bf K}$ as before
- If guess is correct, $\exists \bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2$ of weight p and $\mathbf{s}\mathbf{U}^\top + \bar{\mathbf{e}}_1\mathbf{S}_1^\top\mathbf{U}^\top + \bar{\mathbf{e}}_2\mathbf{S}_2^\top\mathbf{U}^\top$ has weight t 2p
- so far, the same as before!
- Idea for speedup of finding $\bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2$: collision search on smaller set of ℓ rows

- Split H as before, except hope for the error distribution in the figure the positions of S contain 2p errors, where p in left half S₁, and p in right half S₂ and there are no errors on chosen l positions outside of information set
- Gauss-reduce ${\bf K}$ as before
- If guess is correct, $\exists \bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2$ of weight p and $\mathbf{s}\mathbf{U}^\top + \bar{\mathbf{e}}_1\mathbf{S}_1^\top\mathbf{U}^\top + \bar{\mathbf{e}}_2\mathbf{S}_2^\top\mathbf{U}^\top$ has weight t 2p
- so far, the same as before!
- Idea for speedup of finding \bar{e}_1, \bar{e}_2 : collision search on smaller set of ℓ rows
 - Collision benefits from birthday paradox

- Split H as before, except hope for the error distribution in the figure the positions of S contain 2p errors, where p in left half S₁, and p in right half S₂ and there are no errors on chosen l positions outside of information set
- Gauss-reduce K as before
- If guess is correct, $\exists \bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2$ of weight p and $\mathbf{s}\mathbf{U}^\top + \bar{\mathbf{e}}_1\mathbf{S}_1^\top\mathbf{U}^\top + \bar{\mathbf{e}}_2\mathbf{S}_2^\top\mathbf{U}^\top$ has weight t 2p
- so far, the same as before!
- Idea for speedup of finding \bar{e}_1, \bar{e}_2 : collision search on smaller set of ℓ rows
 - Collision benefits from birthday paradox
 - Smaller set of ℓ rows is like an early abort for non-collision

- Split H as before, except hope for the error distribution in the figure the positions of S contain 2p errors, where p in left half S₁, and p in right half S₂ and there are no errors on chosen l positions outside of information set
- Gauss-reduce K as before
- If guess is correct, $\exists \bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2$ of weight p and $\mathbf{s}\mathbf{U}^\top + \bar{\mathbf{e}}_1\mathbf{S}_1^\top\mathbf{U}^\top + \bar{\mathbf{e}}_2\mathbf{S}_2^\top\mathbf{U}^\top$ has weight t 2p
- so far, the same as before!
- Idea for speedup of finding \bar{e}_1, \bar{e}_2 : collision search on smaller set of ℓ rows
 - Collision benefits from birthday paradox
 - Smaller set of ℓ rows is like an early abort for non-collision
 - p and ℓ are small parameters that optimize the complexity

- Split H as before, except hope for the error distribution in the figure the positions of S contain 2p errors, where p in left half S₁, and p in right half S₂ and there are no errors on chosen l positions outside of information set
- Gauss-reduce K as before
- If guess is correct, $\exists \bar{\mathbf{e}}_1, \bar{\mathbf{e}}_2$ of weight p and $\mathbf{s}\mathbf{U}^\top + \bar{\mathbf{e}}_1\mathbf{S}_1^\top\mathbf{U}^\top + \bar{\mathbf{e}}_2\mathbf{S}_2^\top\mathbf{U}^\top$ has weight t 2p
- so far, the same as before!
- Idea for speedup of finding \bar{e}_1, \bar{e}_2 : collision search on smaller set of ℓ rows
 - Collision benefits from birthday paradox
 - Smaller set of ℓ rows is like an early abort for non-collision
 - p and ℓ are small parameters that optimize the complexity
ISD attacks timeline

- Information Set Decoding: [Prange '62] 2^{0.1208n}
- Allow non-perfect information set: [Lee & Brickell '88]
- Birthday improvement: [Stern, 89], [Dumer '91]
- Initial McEliece parameters broken: [Bernstein, Lange, & Peters '08]
- Ball-collision decoding [Bernstein, Lange, & Peters '11]
- Asymptotic exponent improved [May, Meurer, & Thomae '11]
- Decoding one out of many [Sendrier '11]
- Even better asymptotic exponent [Becker, Joux, May, & Meurer '12] 2^{0.1019n}
- "Nearest Neighbor" variant [May & Ozerov '15]
- Sublinear error weight [Canto Torres & Sendrier '16]
- ISD using Quantum walks (post-quantum) [Kachigar-Tillich '17]
- Nearest Neighbor BJMM [Both-May '17] 2^{0.0953n}
- Post-quantum "Nearest Neighbor" [Kirshanova '18]

Security of Code-based crypto – Other attacks

Other attacks

- Dual attacks (lattice style)
 - statistical decoding reduce to LPN
 - outperform ISD for low rate codes
 - very recent, still work in progress [Carrier et al.'22, Meyer et al.'23]

Other attacks

- Dual attacks (lattice style)
 - statistical decoding reduce to LPN
 - outperform ISD for low rate codes
 - very recent, still work in progress [Carrier et al.'22, Meyer et al.'23]
- **DOOM** (Decode One Out of Many)
 - Attacker is satisfied with one decoded ciphertext, when given many
 - ISD algorithms can be improved by $\mathcal{O}(\sqrt{n})$
 - influence on quasi-cyclic codes, MDPC codes

- Dual attacks (lattice style)
 - statistical decoding reduce to LPN
 - outperform ISD for low rate codes
 - very recent, still work in progress [Carrier et al.'22, Meyer et al.'23]
- **DOOM** (Decode One Out of Many)
 - Attacker is satisfied with one decoded ciphertext, when given many
 - ISD algorithms can be improved by $\mathcal{O}(\sqrt{n})$
 - influence on quasi-cyclic codes, MDPC codes
- Key recovery attacks
 - LDPC codes polynomial-time (constant density)
 - MDPC codes generic decoding only $\mathcal{O}(2^{\sqrt{n}})$ (density $\mathcal{O}(\sqrt{n})$)
 - Algebraic attacks
 - Polynomial-time distinguisher for high-rate alternant and Goppa codes
 - No influence on Classic McEliece

 $\boldsymbol{m_1}, \boldsymbol{c_1}$

 $\mathbf{m}_2, \mathbf{c}_2$

 $\mathbf{m}_t, \mathbf{c}_t$

- Idea: iteratively test the error vector positions
- For position i, $\mathbf{s}' \leftarrow \mathbf{s} \oplus \mathbf{H}_i$

- Idea: iteratively test the error vector positions
- For position i, $\mathbf{s}' \leftarrow \mathbf{s} \oplus \mathbf{H}_i$

- Idea: iteratively test the error vector positions
- For position i, $\mathbf{s}' \leftarrow \mathbf{s} \oplus \mathbf{H}_i$

- Idea: iteratively test the error vector positions
- For position i, $\mathbf{s}' \leftarrow \mathbf{s} \oplus \mathbf{H}_i$

- Idea: iteratively test the error vector positions
- For position i, $\mathbf{s}' \leftarrow \mathbf{s} \oplus \mathbf{H}_i$
- Ask a decoding failure oracle whether *t* is exceeded
 - A redundant error $(\mathbf{e}_i = 1)$ cancels out
 - An additional error (**e**_i = 0) leads to failure

- Idea: iteratively test the error vector positions
- For position i, $\mathbf{s}' \leftarrow \mathbf{s} \oplus \mathbf{H}_i$
- Ask a decoding failure oracle whether *t* is exceeded
 - A redundant error $(\mathbf{e}_i = 1)$ cancels out
 - An additional error ($\mathbf{e}_i = 0$) leads to failure
- Effort: *k* queries
 - Attacker only needs to recover an information set

- Idea: iteratively test the error vector positions
- For position i, $\mathbf{s}' \leftarrow \mathbf{s} \oplus \mathbf{H}_i$
- Ask a decoding failure oracle whether *t* is exceeded
 - A redundant error $(\mathbf{e}_i = 1)$ cancels out
 - An additional error ($\mathbf{e}_i = 0$) leads to failure
- Effort: *k* queries
 - Attacker only needs to recover an information set
- Even lees by iterative chunking
- Even less if attacker has some computational power to solve a smaller Information Set Decoding problem

• Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)

- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
 - easy to turn into a message recovery attack (as seen above)

- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
 - easy to turn into a message recovery attack (as seen above)
- Recently first key recovery attack on McEliece [Guo, Johansson, Johansson '22]
- Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.'23]

- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
 - easy to turn into a message recovery attack (as seen above)
- Recently first key recovery attack on McEliece [Guo, Johansson, Johansson '22]
- Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.'23]
- Decoding algorithms are difficult to make constant time
 - Timing attacks on McEliece, HQC, BIKE
 - Rejection sampling exploited in HQC, BIKE

- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
 - easy to turn into a message recovery attack (as seen above)
- Recently first key recovery attack on McEliece [Guo, Johansson, Johansson '22]
- Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.'23]
- Decoding algorithms are difficult to make constant time
 - Timing attacks on McEliece, HQC, BIKE
 - Rejection sampling exploited in HQC, BIKE
- Side-channel attacks biggest issue currently for post-quantum schemes
 - For code-based schemes still not many countermeasures available
 - Protection influences performance significantly
 - Cheap and effective countermeasures are necessary

- Previous attack causes decoding failures regardless of the decoding failure rate of the scheme (if any at all)
- Side-channel decoding failure oracle can be efficiently constructed
 - easy to turn into a message recovery attack (as seen above)
- Recently first key recovery attack on McEliece [Guo, Johansson, Johansson '22]
- Very recently, high-redundancy used in key recovery attack on McEliece [Brinkmann et al.'23]
- Decoding algorithms are difficult to make constant time
 - Timing attacks on McEliece, HQC, BIKE
 - Rejection sampling exploited in HQC, BIKE
- Side-channel attacks biggest issue currently for post-quantum schemes
 - For code-based schemes still not many countermeasures available
 - Protection influences performance significantly
 - Cheap and effective countermeasures are necessary

NIST's additional round on signatures

- Enhanced pqsigRM
- FuLeeca
- Wave
- CROSS
- SDitH
- LESS
- MEDS
- ALTEQ

- Enhanced pqsigRM
- FuLeeca
- Wave
- CROSS
- SDitH
- LESS
- MEDS
- ALTEQ
- 5 Fiat-Shamir signatures
- 3 of them based on equivalence problem

Digital signatures via the Fiat-Shamir transform

Digital signatures via the Fiat-Shamir transform

Digital signatures via the Fiat-Shamir transform

FS signature

Signer

$$com \leftarrow \mathcal{P}_0{}^r(sk)$$
 $ch \leftarrow H(m, com)$
 $resp \leftarrow \mathcal{P}_1{}^r(sk, com, ch)$

 output : $\sigma = (com, resp)$

Verifier
$cn \leftarrow H(m, com)$
$b \leftarrow Vf^r(pk,com,ch,resp)$
output : <i>b</i>

Code equivalence problem $CE(\mathcal{C}_0, \mathcal{C}_1)$:

Given C_0 and C_1 , find (if any) an isometry (preserves metric) ϕ s.t. $C_1 = \phi(C_0)$

Code equivalence problem $CE(\mathcal{C}_0, \mathcal{C}_1)$:

Given C_0 and C_1 , find (if any) an isometry (preserves metric) ϕ s.t. $C_1 = \phi(C_0)$

Hard code-based equivalence problems in NIST's 4th round?

- Code equivalence LESS Baldi et. al (Biasse et al.'20, LESS-FM Barenghi et al.'21)
 - Hamming metric, linear codes
 - isometry defined by permutation matrix

Code equivalence problem $CE(\mathcal{C}_0, \mathcal{C}_1)$:

Given C_0 and C_1 , find (if any) an isometry (preserves metric) ϕ s.t. $C_1 = \phi(C_0)$

Hard code-based equivalence problems in NIST's 4th round?

- Code equivalence LESS Baldi et. al (Biasse et al.'20, LESS-FM Barenghi et al.'21)
 - Hamming metric, linear codes
 - isometry defined by permutation matrix
- Matrix code equivalence MEDS with T.Chou, R.Niederhagen, E.Persichetti, T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22

Code equivalence problem $CE(\mathcal{C}_0, \mathcal{C}_1)$:

Given C_0 and C_1 , find (if any) an isometry (preserves metric) ϕ s.t. $C_1 = \phi(C_0)$

Hard code-based equivalence problems in NIST's 4th round?

- Code equivalence LESS Baldi et. al (Biasse et al.'20, LESS-FM Barenghi et al.'21)
 - Hamming metric, linear codes
 - isometry defined by permutation matrix
- Matrix code equivalence MEDS with T.Chou, R.Niederhagen, E.Persichetti,

T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22

- Rank metric, matrix codes
- isometry defined by non-singular matrices A, B

Code equivalence problem $CE(\mathcal{C}_0, \mathcal{C}_1)$:

Given C_0 and C_1 , find (if any) an isometry (preserves metric) ϕ s.t. $C_1 = \phi(C_0)$

Hard code-based equivalence problems in NIST's 4th round?

- Code equivalence LESS Baldi et. al (Biasse et al.'20, LESS-FM Barenghi et al.'21)
 - Hamming metric, linear codes
 - isometry defined by permutation matrix
- Matrix code equivalence MEDS with T.Chou, R.Niederhagen, E.Persichetti,

T.H.Randrianarisoa, L.Ran, K.Reijnders, M.Trimoska, '22

- Rank metric, matrix codes
- isometry defined by non-singular matrices A, B
- Alternate trilinear form equivalence ALTEQ Blase et al. (Tang et al.'22)
 - Rank metric, skew-symmetric matrix codes
 - isometry defined by non-singular matrix **A**

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Let ϕ be an isometry s.t. $C_1 = \phi(C_0)$.

Relation between problems

Relation between problems

• Homogenous Quadratic Maps Linear Equivalence (hQMLE) problem is well known equivalence problem from multivariate crypto (instance of Isomorphism of Polynomials)

Relation between problems

• Homogenous Quadratic Maps Linear Equivalence (hQMLE) problem is well known equivalence problem from multivariate crypto (instance of Isomorphism of Polynomials)

Parameters and performance of LESS, MEDS, ALTEQ

Level	param. set	public key size (KB)	signature size (KB)
I	LESS-1b	13.7	8.4
I	MEDS-9923	9.9	9.9
I	ALTEQ Balanced	8	16
- 111	LESS-3b	34.5	18.4
111	MEDS-41711	41.7	41
- 111	ALTEQ Balanced	32	48

• Standard optimizations: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree

Parameters and performance of LESS, MEDS, ALTEQ

Level	param. set	public key size (KB)	signature size (KB)
I	LESS-1b	13.7	8.4
I	MEDS-9923	9.9	9.9
I	ALTEQ Balanced	8	16
	LESS-3b	34.5	18.4
- 111	MEDS-41711	41.7	41
111	ALTEQ Balanced	32	48

- Standard optimizations: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
- New in MEDS: Public Key Compression
 - generate public key partially from seed \Rightarrow signature size reduction
 - Work in progress: use similar idea during signing

Parameters and performance of LESS, MEDS, ALTEQ

Level	param. set	public key size (KB)	signature size (KB)
I	LESS-1b	13.7	8.4
I	MEDS-9923	9.9	9.9
I	ALTEQ Balanced	8	16
	LESS-3b	34.5	18.4
- 111	MEDS-41711	41.7	41
	ALTEQ Balanced	32	48

- Standard optimizations: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
- New in MEDS: Public Key Compression
 - generate public key partially from seed \Rightarrow signature size reduction
 - Work in progress: use similar idea during signing
- Brand new in LESS: Information Set formulation, Canonical forms
 - significant signature reduction

Thank you for listening!

Cryptography Conference

PQ SHIELD

Fortanix	KEŸFACTOR	🕅 NOREG
👰 QRL	THALES	d-trust.

amsterdam convention bureau ascettia

