Post-Quantum

Cryptography Conference

Opening

Paul van Brouwershaven

Chair PKI Consortium

Albert de Ruiter

Logius

Post-Quantum

Cryptography Conference

Paul van Brouwershaven

- Chair PKI Consortium
- Director Technology Compliance at **Entrust**
- Vice-chair <u>CA/Browser Forum</u>

Albert de Ruiter

- Policy Authority PKI Dutch Government (<u>Logius</u>)
- Board member <u>HAPKIDO</u>
- Member of the QVC WG <u>Dutch Government</u>

Who is the PKI Consortium?

PKI Consortium

Registered as a 501(c)(6) non-profit entity ("business league") under Utah law (10462204-0140)

- A diverse group of <u>110+ members</u> such as governments, auditors, consultants, trust service providers, software and hardware vendors
- We are a <u>non-profit entity</u>, we have no membership fees
- Our vision is "Trusted digital <u>assets</u> and <u>communication</u> for <u>everyone</u> and <u>everything</u>"
- We are committed to improve, create and collaborate on generic, industry or use-case specific policies, procedures, best practices, standards and tools that advance trust in assets and communication

CRYPTO4A

0

DIGITALTRUST

M EVERTRUST

KEYFACTOR • buypass

CREDIT SUISSE

DavidGroup

SECTIGO®

What are we working on?

Remote Key Attestation

pkic.org/remote-key-attestation

Vendor/Model	Capability	Format	Documentation	Notes
Cloud HSMs				
Google CloudHSM	*	JSON	https://cloud.google.com/kms/docs/attest-key	
AWS CloudHSM	×			
AWS KMS	×			
Azure Key Vault	×			
Azure Managed HSM	×⊙			Claimed to be on the roadmap
HSMs				
Entrust nShield	x ⊙		https://github.com/pkic/remote-key-attestation/issues/3	Claimed to be on the roadmap
Utimaco CryptoServer	×			
Thales Luna	•	CMS/PKCS#7	https://thalesdocs.com/gphsm/luna/7/docs/network/Content/admin_partition/confirm/confirm_hsm.htmhttps://thalesdocs.com/gphsm/luna/7/docs/network/Content/Utilities/cmu/cmu_getpkc.htm	
Marvell HSMCMS/PKCS#7	•	Proprietary/Binary	https://www.marvell.com/products/security-solutions/nitrox-hs-adapters/software-key-attestation.html	GCP Cloud HSM, AWS CloudHSM and MS Managed HSM are using Marvell hardware in the background
Securosys Primus HSM	*	XML with external sig	$\frac{https://www.securosys.com/hubfs/Securosys_PrimusHSM_KeyAttestation_SB-E01.pdf}{(Documentation in HSM User Guide)}$	
I4P Trident HSM	~	CMS/PKCS#7	https://www.i4p.com/documents/Trident_RSS_summary_sheet_200929.pdf	No detailed documentation about using key attestation available publicly.
Fortanix	x ①			Claimed roadmap item for H1 2023
Tokens				
Yubico	•	X.509	https://developers.yubico.com/YubiHSM2/Concepts/Attestation.htmlhttps://developers.yubico.com/yubico-piv-tool/Attestation.htmlhttps://developers.yubico.com/PIV/Introduction/PIV_attestation.html	
Trusted Platform Module	•	TPMS_ATTEST/PKCS#10	https://www.cs.unh.edu/~it666/reading_list/Hardware/tpm_fundamentals.pdfhttps://docs.microsoft.com/en-us/windows-server/identity/ad-ds/manage/component-updates/tpm-key-attestationhttps://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/f596c7df-a72c-4323-	

PKI Maturity Model

pkic.org/pkimm

The PKI maturity model and assessment methodology will be used as an entry point for anyone evaluating PKI environment by itself or using an independent third party.

The model provides the following benefits:

- Quickly understand the current level of capabilities and performance of the PKI
- Support comparison of PKI maturity with similar organizations based on size or industry
- Improvement strategy for the current PKI state
- Improve overall PKI performance and ability to meet the requirements of the industry

PQC Capabilities Matrix (PQCCM)

pkic.org/pqccm

Vendor	Product	Category	Last updated			LMS				SPHINCS+				HQC
Botan	Botan	Software library	2023-10-04	×	×	0	*	×	*	~	~	×	0	×
Bouncy Castle	BC	Software library	2022-11-22	~	•	~	•	~	*	~	~	~	*	~
Crypto4A	QxEDGE	HSP	2022-12-04	0	~	~	4	0	~	~	~	×	•	×
Crypto4A	QxHSM	HSM	2022-12-04	O	~	~	~	•	~	~	~	×	~	×
CZERTAINLY	CZERTAINLY	Software	2023-02-19	×	×	×	×	~	~	~	×	×	×	×
Entrust	nShield	HSM	2022-11-22	×	×	×	×	~	~	~	×	×	×	×
Entrust	PKlaaS	PKI	2022-11-22	~	×	×	×	~	~	~	×	×	×	×
Fortanix	FX2200	HSM	2022-11-29	×	×	~	×	0	0	•	×	×	×	×
<u>14P</u>	Trident	HSM	2022-12-01	×	×	×	0	×	×	~	~	×	×	×
IBM	4769/CCA/EP11	HSM	2023-01-11	×	×	×	×	×	~	×	×	×	×	×
ISC	CDK	Software library	2023-03-04	×	×	*	×	~	*	4	*	×	*	×
ISC	CertAgent	PKI	2023-03-04	×	×	0	×	~	~	~	~	×	~	×
Keyfactor	SignServer	Signing Software	2022-12-19	×	×	×	×	×	*	~	×	×	×	×
Keyfactor	EJBCA	PKI	2022-12-19	×	×	×	×	~	~	×	×	×	×	×
MTG AG	Corporate PKI	PKI	2023-09-25	×	×	×	×	~	~	~	0	×	~	×
<u>Open</u> <u>Quantum Safe</u>	liboqs	Software library	2022-11-30	×	×	×	×	*	~	~	*	~	*	~
Securosys	Primus	HSM	2022-11-28	0	0	×	×	×	•	0	0	×	×	×
Thales	Luna	HSM	2022-11-22	×	×	~	~	×	~	×	•	×	×	×
Utimaco	Q-Safe	HSM	2022-11-28	×	×	~	~	×	~	×	4	×	×	×
Utimaco	u.trust Identify	PKI	2022-11-28	~	×	×	×	-	•	~	×	×	×	×

Why do we organize this PQC Conference?

Key take aways from Ottawa

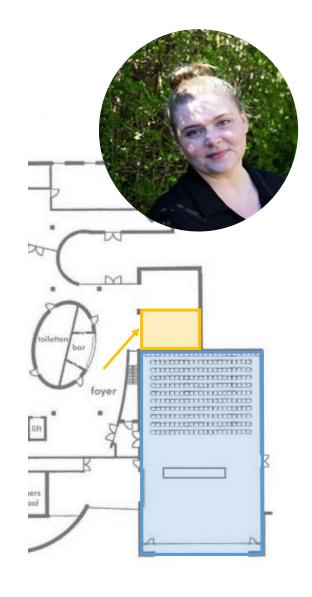
- Quantum computers will be able to break current public key encryption
- Long term data needs to be protected now
- Failure to migrate leaves applications and data at risk of compromise
- Accurate crypto inventory & mitigation strategies are required
- This crypto migration will be the hardest we've ever done

What is on the agenda?

	Tuesday (7 November)						
	Plenary (Blue Hall)						
09:00	Opening	PKI					
09:30		ENTRUST HID Consortium					
10:00	Status update from NIST	Breakout (6 & 7)					
10:30	Break						
11:00	Preparing the United States for Post-Quantum Cryptography	Lattice based Counterwells					
11:20	A Quantum Cybersecurity Agenda for Europe	Lattice-based Cryptography					
11:40	Post-Quantum Policy and Roadmap of the BSI	Stateful Hash-Rased Signature Schemes					
12:00	ANSSI plan for post-quantum transition Stateful Hash-Based Signature Schemes						
12:20	Unlocking the Quantum-Resilient Cryptography Strategy for the Dutch central government	Code-based Cryptography					
12:40	Ask the Experts: Global Perspectives on Post-Quantum Cryptography Governance						
13:00	Lunch						
14:00	What is it going to take to break cryptography with a quantum computer?	LMS: Lighter, faster key generation					
14:30	Crunching the Numbers: Post Quantum Algorithm Performance	Machine-checking post-quantum cryptography					
15:00	Comparing Strategies for Quantum-Safe Cryptography Adoption in Organizations	Leading the Quantum-safe Transition: A Growth Stages Approach					
15:30	Break						
16:00	Birth of the Post-Quantum Internet	Update from the GSMA Post Quantum Telco Network Task Force					
16:30	Post-quantum crypto integration for enterprise applications	Building Your PQC Lab: Trust But Verify Your PQC Ecosystem					
17:00	Closing remarks for day 1						
17:05	Networking						

	Wednesday (8 November)						
	Plenary (Blue Hall)	Breakout (6 & 7)					
09:00	Post-Quantum Crypto: Challenges for Embedded Applications	A testbed for evaluating post-quantum algorithms for the DNS					
09:30	Challenges for the Post-Quantum Transition of Mobile Ecosystems	Coping with post-quantum signatures in the WebPKI					
10:00	Hardware Cryptographic Modules (panel discussion)	Your cryptography will be broken, prepare yourself now! (discussion)					
10:30	Break						
11:00	How to Sell Post-Quantum Readiness by Combining it with a Zero Trust Journey	A Sign of the Times: The Transition to Quantum Secure Authentication					
11:30	Quantum-safe PKI for the German administration	Quantum Resistance through Symmetric Key Cryptography					
12:00	PKI and PQC Strategy for Payment Card Industry	Symmetric Key Exchange: Lightweight Alternatives for a Post-Quantum IoT					
12:30	Post-Quantum Cryptography & Trust Services	Vulnerabilities of Blockchain Security in the World of Quantum Computing					
13:00	Lunch						
14:00	NIST standardization of additional signature schemes	Investigating Post-Quantum Cryptography: building a PQC decision tree for developers					
14:30	Moving toward a Quantum Security Maturity Index	Using quantum-safe hybrid certificates for signing documents					
15:00	PKI deployments are as unique as any snowflake; how to build equally flexible PQ migration strategies	CRQC and Signatures – no Problem?					
15:30	Break						
16:00	Final Q&A						
16:30	Recap: Unveiling Insights A Two-Day Conference Retrospective	ENTRUST HID CONSORTIUM					
17:00	Closing remarks						
17:05	Netwo	orking					

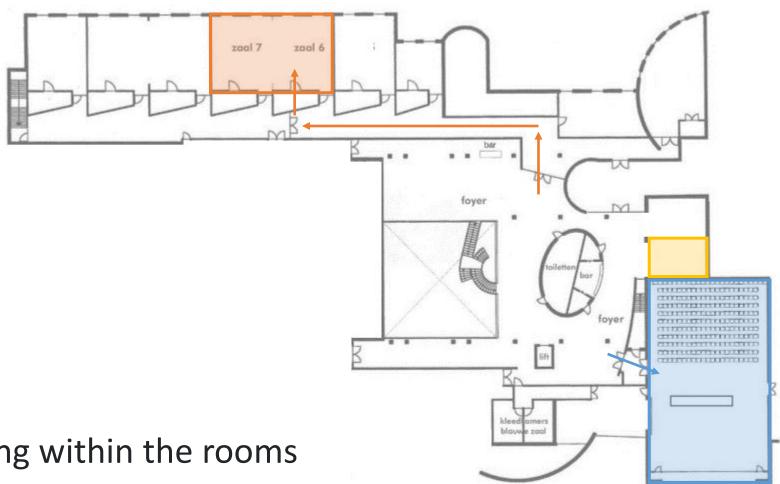
The Leap to Quantum-Safety:


A game for the transition to QS PKI

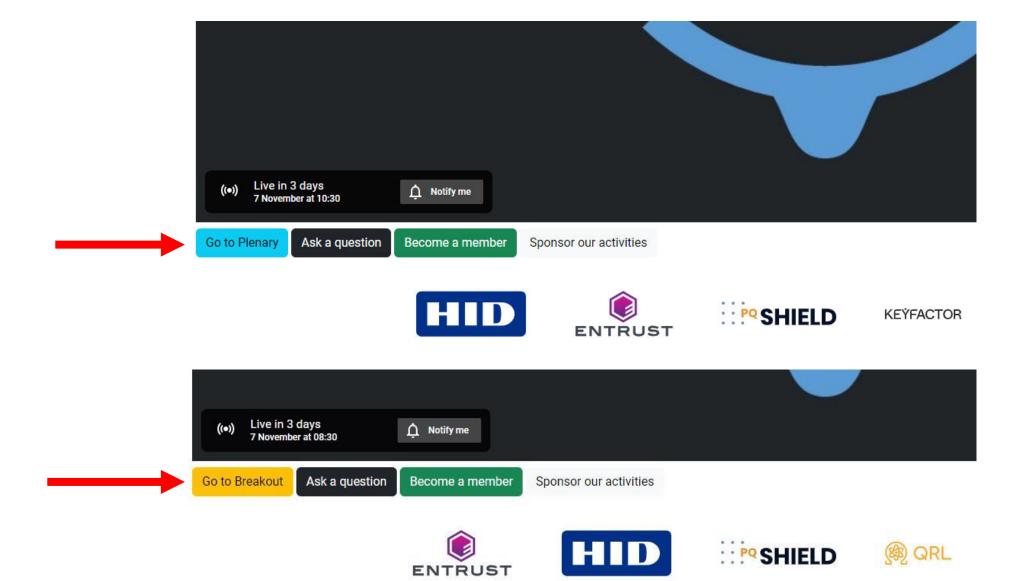
Lærke Vinther Christiansen

In this workshop you will play the first prototype of a serious game meant to aid in the transition to QS PKI as a part of the HAPKIDO Project.

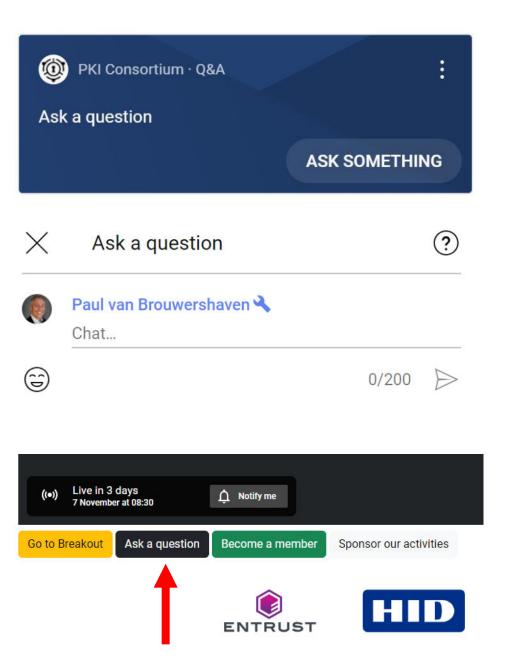
The game is played with two groups of 4-6 participants. You can register in the lobby (directly right outside the plenary/blue hall).


The purpose of the game is to give the player an actionable understanding of the interdependencies of the QS PKI transition, their role in the transition, and to provide them with a comprehensive understanding of the necessary next steps for the transition in general and for themselves specifically.

Housekeeping



- No smoking
- No drinks or eating within the rooms

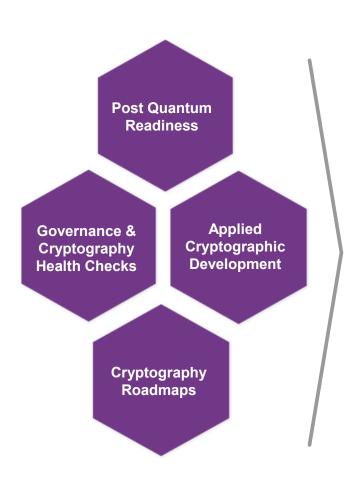


Switch between **Plenary** and **Breakout**

Questions

Thanks to the <u>key contributors</u> of this conference

This event would not have been possible without our <u>sponsors</u>



Entrust Solutions for Today, and a PQ Future

PKI for Machines and People

Virtual Infrastructure compliance

Digital/Code Signing & Time Stamping Crypto Discovery, Control & Automation

Trust Anchors

SSL, Verified Mark & Email Encryption

Digital onboarding

Identity (Smart, Risk Engine, Decentralized)

Key/Secrets Management Hardware Key protection

Blockchain & MPC security

Instant & Bureau Card & Passport Issuance

Digital Payment Cards

Data Encryption
Services

Custom Solutions

:: PQ SHIELD

think openly, build securely

Hardware IP

Modular hardware IP delivering quantum-resistant security, co-processing and side channel protection.

Software IP

FIPS 140-3 ready modular cryptographic libraries, APIs and SDKs for quantum-safe and hybrid transition.

Research IP

Setting the standards at NIST, RISC-V, IETF, World Economic Forum and many more platforms beyond. 10+ Patents.

The Challenge HSMs are out-dated

Security, wherever your data is

The Solution

Fortanix re-invented the HSM

- DSM unifies HSM, KMS & more
- PQ-ready
- Written in Rust
- Native clustering
- Multi-tenancy
- User friendly & cloud friendly
- 100% remotely manageable
- 100% API driven

Deployment flexibility

- Physical appliance for on-prem
- Virtual appliance for public/private cloud
- SaaS for simplicity (6 regions available)

Fortanix.com

QUESTIONS?

Have any questions or would like to learn more? We would love to hear fromyou.

Let's talk!

PressInquiries

press@theqrl.org

Support Requests

support@theqrl.org

General Inquiries

info@theqrl.org

Social

Discord: https://www.discord.gg/qrl

Reddit: https://www.reddit.com/r/qrl

Twitter: https://twitter.com/QRLedger

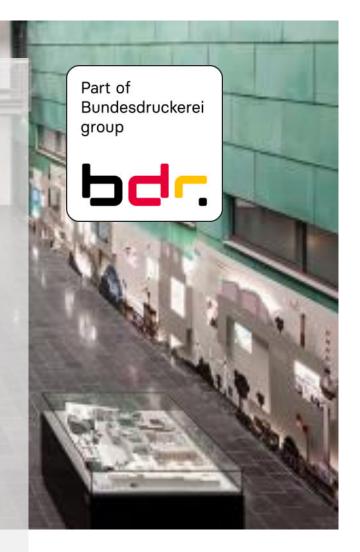
YouTube: https://youtube.com/c/QRLedger

QRL Blog: https://www.theqrl.org/blog/

THALES

Building Your PQC Lab – Trust but Verify Your PQC Ecosystem

- What's the Problem We're Solving
- Getting Started
- Staffing, Budgeting and Planning Ahead
- Case Study: Major US Bank
- Ecosystem Support
- Q&A



Blair Canavan, Thales

Session: November 8, 14:30

- D-Trust, a company of the Bundesdruckerei Group
- pioneer in secure digital identities
- independent and qualified trust service provider
- **listed with the Federal Network Agency** since 2016 within the framework of the **eIDAS** regulation
- translates trust into concrete products such as digital certificates
 and electronic signatures
- enable secure digital identities for companies, public authorities and for private use.
- workforce of currently around 240,
- generating revenue of EUR 79.9 million in 2021

Join the PKI Consortium

pkic.org/join

pkic.org/join

Post-Quantum

Cryptography Conference

KEŸFACTOR

THALES

