Post-Quantum

Cryptography Conference

Lattice-based Cryptography

Léo Ducas

Researcher at Centrum Wiskunde & Informatica (CWI) and Professor at Leiden University

Léo Ducas

CENTRUM WISKUNDE & INFORMATICA, AMSTERDAM LEIDEN UNIVERSITY, MATHEMATICAL INSTITUTE

PKI-Consortium, Post-Quantum Cryptography Conference, Nov 2023

Standardisation of Lattice-based Cryptosystems

Lattice in Post-Quantum Cryptography Standardisation Process:

Key Exchange:

Kyber

Signature:

- Dilithium
- Falcon

Lattice

- Public Key Encryption with Lattices
- Digital Signatures with Lattices
- Current State of Cryptanalysis

Lattices and their Bases

Lattices are (infinite) regular grids of point in (euclidean) space. They can be finitely described thanks to their bases. Example in Dimension 2:

Lattices and their Bases

Lattices are (infinite) regular grids of point in (euclidean) space. They can be finitely described thanks to their bases. Example in Dimension 2:

Using Lattices in Cryptography

Bases allow to 'tile' the space, and perform error correction.

Using Lattices in Cryptography

Bases allow to 'tile' the space, and perform error correction.

As dimension grows > 2, the error tolerance gap between G and B grows exponentially.

Léo Ducas (CWI & Leiden U.) Lattice-based Cryptography

Encryption Procedure

- View the message as a lattice point $m \in L$ (can do with **B**)
- Choose a random small error vector e

(e.g. binary)

Return ciphertext c = m + e

Encryption Procedure

- View the message as a lattice point $m \in L$ (can do with **B**)
- Choose a random small error vector e

(e.g. binary)

• Return ciphertext c = m + e

Decryption Procedure

- Tile to recover the center m of the tile (should do with G)
- Return decrypted message m

Encryption Procedure

- View the message as a lattice point $m \in L$ (can do with **B**)
- Choose a random small error vector e

(e.g. binary)

• Return ciphertext c = m + e

Decryption Procedure

Tile to recover the center *m* of the tile

Return decrypted message m

Lattice-based Encryption is as simple as Tetris

It might be hard to get intuition for lattice in dimension > 2...Cryptris:

A serious game to understand how it works, and why it is secure.

Developed with Inria (FR), translated to EN and NL at CWI https://cryptris.nl/

Simple to Implement

- Encryption involve a Matrix-Vector product
- Tiling is a more involved, but Decryption can be simplified
- We can choose *q*-ary lattices, to make all computation mod *q*

Structured Lattices

Use circulant blocks in the matrix to improve compactness

$$\begin{bmatrix} c_0 & c_{n-1} & \cdots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & & c_2 \\ \vdots & c_1 & c_0 & \ddots & \vdots \\ c_{n-2} & \ddots & \ddots & c_{n-1} \\ c_{n-1} & c_{n-2} & \cdots & c_1 & c_0 \end{bmatrix}$$

Speed benefits as well thanks to Fast Fourier Transform

Fast, but a bit Large

- Computation speed is not an issue worst operation is a fraction of milli-second on x86-Haswell
- Key and ciphertext sizes are larger than pre-quantum but nothing is particularly huge

Kyber-512

Sizes (bytes)	Cycles (ref)	Cycles (avx2)
sk: 2400	gen: 199k	gen: 52k
pk: 1184	enc: 235k	enc: 68k
ct: 1088	dec: 274k	dec: 53k

Fast, but a bit Large

- Computation speed is not an issue worst operation is a fraction of milli-second on x86-Haswell
- Key and ciphertext sizes are larger than pre-quantum but nothing is particularly huge

Kyber-512

Sizes (bytes)	Cycles (ref)	Cycles (avx2)
sk: 2400	gen: 199k	gen: 52k
pk: 1184	enc: 235k	enc: 68k
ct: 1088	dec: 274k	dec: 53k

 $\approx 80\%$

It's so fast that PRNG is the bottleneck

- SHAKE (SHA-3 Hash with Extended Output)
- Hardware acceleration expected in future CPUs

A Migration Challenge: Interactivity in Key-Exchange

DH & ECDH are **non-interactive** It doesn't matter who speaks first

A Migration Challenge: Interactivity in Key-Exchange

DH & ECDH are **non-interactive** It doesn't matter who speaks first

Kyber is interactive

the migration may require more than drop-in replacement

the rest is only a matter of performances

Léo Ducas (CWI & Leiden U.) Lattice-based Cryptography

Digital Signatures with Lattices And why they are a bit more painful

A Naive Approach

RSA "Hash-then-Sign" Signatures

- Signature : Set sig := RSA-decrypt(Hash(message))
- Encryption : Check RSA-encrypt(sig) = Hash(message)

Could we just do the same with lattices ?

A Naive Approach

RSA "Hash-then-Sign" Signatures

- Signature : Set sig := RSA-decrypt(Hash(message))
- Encryption : Check RSA-encrypt(sig) = Hash(message)

Could we just do the same with lattices ?

A Naive Approach

RSA "Hash-then-Sign" Signatures

- Signature : Set sig := RSA-decrypt(Hash(message))
- Encryption : Check RSA-encrypt(sig) = Hash(message)

Could we just do the same with lattices ?

but ...

It's only secure if you don't use it much...

Léo Ducas (CWI & Leiden U.) Lattice-based Cryptography

The distribution of signatures leaks the secret key !

- Linear algebra mod q (as for Encryption)
- Linear algebra over the real numbers
- Sampling from very specific distribution

Requires Floating Point Arithmetic

Something never done in crypto before !

- Numerical precision issues
- Determinism issues
- Timing side-channel issues

Despite the above technical difficulties, "Hash-then-Sign" Lattice Signatures are essentially as performant as encryption **on standard CPUs**.

Falcon-512			
	Sizes (bytes)	Cycles (ref)	
		gen: 8.6ms	
	pk: 897	sign: 160μ s	
	sig: 666	verif: 35 μ s	

Dilithium

- Based on a different paradigm (Fiat-Shamir with Aborts)
- No Floating Points, but an annoying "restart"
- Bigger Signatures and Public Keys

Hawk: new on-ramp candidate at NIST standardization

- Same "hash-then-sign" paradigm
- but extra orthogonal lattice structure
- No Floating Points
- Very new assumption, lacks cryptanalytic maturity
- Might be too similar to Falcon for the NIST to standardize it

Current State of Cryptanalysis Reading Through the Public Noise

The cost of lattice attack is driven by the cost of solving SVP.

• The best asymptotic algorithm stabilized in 2015 at:

$$T = 2^{.292n+o(n)}$$
 $M = 2^{.207n+o(n)}$

- Further improvements in practice (e.g. dimensions for free)
- Current practical records solves SVP in dimension \approx 180, using tensor cores GPUs. Needs to reach 400.
- Precise modeling is painstaking, many things are often simplified

Publication Bias: Ignored overheads keep being ignored, even after they are pointed at and quantified.

Cryptanalysis Always Gets Better ?

Publication Bias: Ignored overheads keep being ignored, even after they are pointed at and quantified.

Estimating the Hidden Overheads in the BDGL Lattice Sieving Algorithm [D. , PQ Crypto 2022]

Is Kyber-512 Bleeding Edge ?

There are claims that Kyber-512 is weaker than AES-128 by a few bits.

These claims ignore

- Documented Algorithmic Overheads [D., Q Crypto 2022]
- The feasibility of gathering so much memory
- The logisitic of routing RAM
- The speed-of-light bound for RAM access

Is Kyber-512 Bleeding Edge ?

There are claims that Kyber-512 is weaker than AES-128 by a few bits.

These claims ignore

- Documented Algorithmic Overheads [D., Q Crypto 2022]
- The feasibility of gathering so much memory
- The logisitic of routing RAM
- The speed-of-light bound for RAM access

The Real Question

- Yes, there are unknown and room for small improvements.
- But fine tuning saving a few more bits is not the concern.
- Significant new cryptanalytic ideas is!

Questions ?

Léo Ducas (CWI & Leiden U.) Lattice-based Cryptography

æ

Cryptography Conference

PQ SHIELD

Fortanix	KEŸFACTOR	🕅 NOREG
👰 QRL	THALES	d-trust.

amsterdam convention bureau ascettia

