

Cryptography Conference

Quantum-safe PKI for the German Administration

Kaveh Bashiri The Federal Office for Information Security (BSI)

Quantum-safe PKI for the German administration

PKI Consortium, Amsterdam, November 8, 2023

Dr. Kaveh Bashiri, Dr. Stavros Kousidis, BSI

The public administration PKI ("Verwaltungs-PKI", V-PKI)

• Goal: Trustworthy identity management for the public administration

- Usage: S/MIME, TLS and other standard applications
- Scale: 6 Sub-CAs, approx. 500.000 subscribers
- Algorithm: RSA

Migration towards a quantum-safe V-PKI necessary!

Important Criteria:

Security	
Performance (especially: signature- and PK-size)	
Interoperability and compatibility with standard applications	
High Availability	

Algorithm	Pros	Cons
XMSS, LMS	 Well-understood security properties Performance (especially: signature- and PK-size) 	Statefulness (!)Backup management
SPHINCS+ (SLH-DSA)	Well-understood security properties	Performance
Dilithium (ML-DSA) in combination with ECDSA	 Better performance than SPHINCS+ Presumably: compatibility with standard applications 	 Structured lattice (?) Compatibility of hybrid mode (?)

Algorithm	Pros	Cons
XMSS, LMS	 Well-understood security properties Performance (especially: signature- and PK-size) 	Statefulness (!)Backup management
SPHINCS+ (SLH-DSA)	Well-understood security properties	Performance
Dilithium (ML-DSA) in combination with ECDSA	 Better performance than SPHINCS+ Presumably: compatibility with standard applications 	 Structured lattice (?) Compatibility of hybrid mode (?)

Comparison of certificate sizes

Algorithm	Signature-size in kB	PK-size in kB	(Signature + PK)-size in kB
RSA4096	0.5	0.5	1
Dilithium3 & ECDSA-384	3.4	2.1	5.5
SPHINCS+-192s	16	0.05	16
SPHINCS+-Few-192s	8	0.05	8
LMS-H20-192-W8	1.1	0.05	1.1
HSS-H5/H15-192-W8	1.8	0.05	1.8

LMS-H20-192-W8 (or HSS-H5/H15-192-W8)

on the Root-CA level?

Algorithm	Pros	Cons
XMSS, LMS	 Well-understood security properties Performance (especially: signature- and PK-size) 	 Statefulness (!) Backup management
SPHINCS+ (SLH-DSA)	Well-understood security properties	Performance
Dilithium (ML-DSA) in combination with ECDSA	 Better performance than SPHINCS+ Presumably: compatibility with standard applications 	 Structured lattice (?) Compatibility of hybrid mode (?)

Algorithm	Pros	Cons
XMSS, LMS	 Well-understood security properties Performance (especially: signature- and PK-size) 	Statefulness (!)Backup management
SPHINCS+ (SLH-DSA)	Well-understood security properties	Performance
Dilithium (ML-DSA) in combination with ECDSA	 Better performance than SPHINCS+ Presumably: compatibility with standard applications 	 Structured lattice (?) Compatibility of hybrid mode (?)

Backup management according to NIST SP 800-208, § 7

(Distributed multi-tree hash-based signatures)

- Create top-level Merkle-tree on HSM 0
- Create bottom-level Merkle-trees on HSM 1, HSM 2
- Sign roots of the bottom-level Merkle-trees with HSM 0
- Store copies of the corresponding signatures and auth. paths outside of the cryptographic modules
- Sign messages with HSM 1 (and then with HSM 2)
- Initiate new HSM 3 as long as HSM 0 is operational

Backup management according to NIST SP 800-208, § 7

(Distributed multi-tree hash-based signatures)

Problem:

- Cryptographic modules may be operational for < 10y
- All HSMs might break at the same time
- Root-CA needs to be able to generate signatures for 10y

Algorithm	Pros	Cons
XMSS, LMS	 Well-understood security properties Performance (especially: signature- and PK-size) 	Statefulness (!)Backup management
SPHINCS+ (SLH-DSA)	Well-understood security properties	Performance
Dilithium (ML-DSA) in combination with ECDSA	 Better performance than SPHINCS+ Presumably: compatibility with standard applications 	 Structured lattice (?) Compatibility of hybrid mode (?)

Hybrid Digital Signatures

- Independent signatures, e.g. PQC & ECC
- Signature is valid if and only if all (independent) signatures verify
- Concrete proposals @IETF:
 - draft-ounsworth-pq-composite-sig
 - draft-wussler-openpgp-pqc
 - Composite construction, e.g. identifier for "ML-DSA-65 + ECDSA-brainpoolP256r1"

Quantum-safe V-PKI – Further Criteria

Quantum-safe V-PKI – Further criteria

Design of certificates:

- Separate signature- and encryption certificates
- Standardisation of post-quantum schemes in common certificate formats
 - Cooperation BSI & genua GmbH for X.509 certificates: draft-gazdag-x509-hash-sigs

Quantum-safe V-PKI – Further criteria

Migration concept:

• Parallel approach:

Smooth transition in order to guarantee business continuity

Migration – What it looks like in validity periods

(The bars represent the validity periods of the corresponding certificates)

Summary

- Crucial criteria for the choice of the post-quantum schemes:
 - ✓ Security
 - ✓ Performance (especially, certificate size)
 - Interoperability and compatibility with standard applications
 - ✓ High Availability
- Hash-based signature schemes:
 - + High confidence
 - Restrictions need to be carefully considered
- Migration timeline for a complex PKI (optimistic): 15y
- When do we have to initiate the transition? **NOW!**

Need commitment to PQC-migration from all involved parties!

Thank you for your attention!

Dr. Kaveh Bashiri **Dr. Stavros Kousidis**

Federal Office for Information Security Godesberger Allee 185-189 53175 Bonn

Email: kaveh.bashiri@bsi.bund.de stavros.kousidis@bsi.bund.de

www.bsi.bund.de/dok/pqmigration-en

Cryptography Conference

PQ SHIELD

Fortanix [®]	KEŸFACTOR	🕅 NOREG
<u></u> 卿 QRL	THALES	d-trust.

amsterdam convention bureau ascettia

