

Cryptography Conference

Post-Quantum Crypto: Challenges for Embedded Applications

Joppe Bos Researcher at NXP Semiconductors

Post-Quantum Crypto: Challenges for Embedded Applications

Joppe W. Bos

contact: pqc@nxp.com

POST-QUANTUM CRYPTOGRAPHY CONFERENCE 2023 NOVEMBER 8, 2023 - AMSTERDAM

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

MAKE A PLAN Airmen should create an emerg

update personal documents
 secure household
 research evacuation aptions/i
 update prescriptions

CREATE A GO-BAG

re supplies ahead of a hurricane. The loa/water Iditanal clothes resonal documents avel supplies escriptions

KNOW YOUR WING GUIDANCE

Whether preparing for a hurricane or evacuating know you wing or installation's guidance. Routinely check for update from leadership and maintain communication with your che of command.

RECOGNIZE WARNINGS & ALERTS

Have several ways to receive alerts. Download real-time alert apps. Sign up for community alerts in your area and be aware of the Emergency Alert System (EAS) and Wireless Emergency Alert (WEA)- which requires no-sign up.

STAY SAFE Practice good hygiene and safety measures durin of a hurricane evacuation or impact. Keep family considerations in mind and don't be adriad to cont

POST-QUANTUM CRYPTO FOR EMBEDDED DEVICES?

Outline

• Risk assessment: when to act?

Embedded perspective

- PQC performance
- High-assurance implementations

RECOGNIZE WARNINGS & ALERTS

Have several ways to receive alerts. Download real-time alert appa. Sign up for community alerts in your area and bi aware of the Emergency Alert System (EAS) and Wireless Emergency Alert (WEA) – which requires no-sign up.

Practice good hygiene and safety measures during at of a hurricane evacuation or impact. Keep family considerations in mind and don't be afriad to contact loadarable for autonous.

STAY SAFE

PQC STANDARDS - NIST

Lattice Hash

Code

National Standards

- USA. NIST announces standards release of 4 PQC schemes ('24 – '25). Additional standards to follow.
- EU. Push from EU for adding schemes to <u>international</u> standard. <u>October '23</u>: ISO to amend <u>ISO/IEC 18033-2</u>.
- **ASIA.** Selection of new schemes ongoing in both China/Korea.

Protocol Standards

- **IETF:** TLS, OpenPGP, hybrid keys, key serialization, encoding for signatures
- ISO/TC 68/SC 2/WG 11 (Encryption algorithms used in banking applications)
- ISO/IEC JTC1/SC 17/WG 4 (Cards and security devices for personal identification)

PQC MIGRATION GUIDANCE BY GOVERNMENTS

USA (NIST/NSA)

- NIST/<u>NSA recommendation</u> available
- Commercial National Security Algorithm Suite 2.0
- PQC FW signature recommended for new products after 2025
- PQC transition complete by 2030 using SW update

Germany (BSI)

- BSI first recommendation (English)
- BSI considerations (German)
- Expectation is that beginning of 2030s, a relevant quantum
- computer is available to be a threat for high-secure applications
 - Quantum security: considers both PQC + QKD

France (ANSSI)

- PQC for security products "as soon as possible" when long-lasting (until 2030) protection is required
- Others to migrate to classic-PQC hybrid in 2025 2030
- Switch to PQC-only expected by 2030

WHY DO WE WANT TO PROTECT KYBER / DILITHIUM?

RUNNING PQC ON EMBEDDED DEVICES

Key sizes

Performance

Memory usage

What about high security implementation?

PQC ON EMBEDDED DEVICES

What is embedded?

• NIST has recommended Arm Cortex-M4

Pqm4: Post-quantum crypto library for the ARM Cortex-M4, STM32F4DISCOVERY 196 KiB of RAM and 1 MiB of Flash ROM

Low-power Edge computing: LPC800 Series

- 8 to 60 MHz Cortex-M0+ core
- { 4, 8, 16 } KiB of SRAM
- { 16, 32 } KiB Flash

Variant			Dilithium-3			
			KiB	10 ³ cc		
	PQClean [1]	K	59.4	3,504		
		S	77.7	12,987		
С		V	56.4	3,666		
only	New [2]	K	6.4	5,112		
		S	6.5	36,303		
		V	2.7	7,249		

[1] M. J. Kannwischer, P. Schwabe, D. Stebila, and T. Wiggers: Improving Software Quality in Cryptography Standardization Projects. Security Standardization Research – EuroS&P Workshops. 2022.

[2] J. W. Bos, J. Renes and A. Sprenkels: Dilithium for Memory Constrained Devices. Africacrypt, LNCS, vol. 13503, Springer, 2022.

PUBLIC 8

DILITHIUM IMPACT

- Measurements on Cortex-M4 from pqm4 framework
- Functional implementation only (not hardened)
- Large trade-offs between stack and efficiency
- 80 ~ 90 percent of run-time in SHA-3

PQC SIGNATURE MIGRATION (EMBEDDED PERSPECTIVE)

Algorithm (Level 3)	PQ Secure?	Standard?	Efficient Signing?	Stateful?	Efficient Verify?	Need hybrid?	PK (Bytes)	Sig (Bytes)
ECC	No	FIPS 186	Yes	No	Yes	N/A	32 B	64 B
Dilithium	Yes	PQC (2024)	Yes	No	Yes	Yes	1952 B	3293 B
Falcon (L5)	Yes	PQC (2024)	No	No	Yes	Yes	1793 B	1280 B
SPHINCS+	Yes	PQC (2024)	No	No	Yes	No	48 B	16224 B
LMS / XMSS	Yes	SP 800-208	Yes?	Yes	Yes	No	60 B	1744 B

FO-CALYPSE

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

11

High-assurance implementations

Use meta-information to extract information about the key used in your target platform / product. Many powerful techniques:

fault injections, simple power analysis, differential power analysis, correlation power analysis, template attacks, higher-order correlation attacks, mutual information analysis, linear regression analysis, horizontal analysis, etc

High-assurance implementations

It took many years to find secure and fast protections for RSA + ECC \rightarrow still cat-and-mouse game

What about Post-Quantum Cryptography?

FUJISAKI OKAMOTO TRANSFORM

Transform a scheme which achieves IND-CPA ("chosen plaintext attack") security to reach IND-CCA ("indistinguishability against chosen-ciphertext attacks") security

• Fujisaki, E. and Okamoto T., Secure integration of asymmetric and symmetric encryption schemes, CRYPTO 1999 and JoC 2013

THE SCA PROBLEM OF THE FO-TRANSFORM

Attack 1: Chosen Plaintext

- Attacker inputs only valid ciphertexts
- Attack focuses on **CPA Decryption**, everything after (and including) **P** is public

Only need to protect CPA Decryption

NP

THE SCA PROBLEM OF THE FO-TRANSFORM

Attack 2: Chosen Ciphertext

- Attacker inputs specially-crafted invalid ciphertexts
- Attack focuses on **CPA Decryption +** everything after (and including) **P** is potentially sensitive
- Potentially all (or most) modules need to be hardened

THE SCA PROBLEM OF THE FO-TRANSFORM

Millions of Points of Interest (Pol)

Easy to build templates

Masked Kyber is broken with only 15k traces.

Curse of Re-encryption: A Generic Power/EM Analysis on Post-Quantum KEMs

Rei Ueno^{1,2,3}, Keita Xagawa⁴, Yutaro Tanaka^{1,2}, Akira Ito^{1,2}, Junko Takahashi⁴ and Naofumi Homma^{1,2}

NE

CASE STUDY: MASKED KYBER

Split variables into *d* shares.

Higher *d* = Higher security + Increased cost

Pre-Quantum: Certified industrial solutions **d** = **2-3**

Number of Shares

CASE STUDY: MASKED KYBER

Split variables into *d* shares.

- Higher *d* = Higher security + Increased cost
- Pre-Quantum: Certified industrial solutions d = 2-3

For low noise:

- Known ciphertext \rightarrow d = 6
- Chosen ciphertext \rightarrow d = 8

FO leakage causes an increase of 2 shares.

For high(er) noise:

- Known ciphertext \rightarrow d = 2
- Chosen ciphertext \rightarrow d = 3

FO leakage causes an increase of 1 share.

CONCLUSIONS

<u>Irrelevant</u> if the quantum threat is real or not New PQC-Standard are coming! → Post-quantum crypto is already being requested by customers in all areas including Industrial, IoT and Automotive!

For embedded platforms challenges in terms of

- Performance, memory and key-sizes
- How to efficiently achieve protection against sophisticated side-channel attacks?

- Think about migration paths now
- ✓ Exciting times to work on crypto & security solutions!

CONTACT: <u>PQC@NXP.COM</u> | NXP.COM/PQC

CONTACT: <u>PQC@NXP.COM</u> | NXP.COM/PQC

Cryptography Conference

PQ SHIELD

Fortanix [®]	KEŸFACTOR	🕅 NOREG
(a) QRL	THALES	d-trust.

amsterdam convention bureau

ascertia

