

Cryptography Conference

Investigating Post-Quantum Cryptography: building a PQC decision tree for developers

Jelle Don Researcher at Centrum Wiskunde & Informatica (CWI)

Alessandro Amadori Cryptographer at TNO

Investigating Post-quantum Cryptography

Building a PQC Decision tree for developers

Dr. A. Amadori, Jelle Don | PKI Consortium

Previously on PQC

- Cryptography crucial for cyber security \rightarrow omni-present
- Emergence of quantum computer
- Variety of PQC algorithms
- <u>PQC migration handbook</u>:
 - 1. Identifying vulnerable systems
 - 2. PQC Personas
 - 3. Migration planning
 - 4. Choosing a replacement
 - 5. Migration execution

In this project we aim to help companies make good, future-proof choices for replacing their traditional crypto systems with PQC

Main Takeaways

- Guidelines for the migration: focus on personas
 - Very high-level overview on the post-quantum alternatives
 - A great start, but not very applicable

	Features		Speed			Memory			
	QUANTUM- SAFE?	MATURITY	VERSATILITY	KEY GEN	ENCRYPTION	DECRYPTION	PUB KEY	PRIV KEY	CIPHERTEXT
RSA									
Elliptic-curve									
CRYSTALS-DILITHIUM									
CRYSTALS-KYBER									
FrodoKEM									
FALCON									
BIKE									
Classic McEliece									
HỌC									
SPHINCS+									

FIPS 203 (Draft)

Different Recommendations

Bundesamt für Sicherheit in der Informationstechnik

The questions

Many alternatives, many standards, many recommendations:

- Key-Encapsulation Mechanisms
 - Kyber
 - FrodoKEM
 - Classic McEliece
 - ...
- Digital Signatures
 - Dilithium
 - Falcon
 - SPHINCS+
 - XMSS

A PQC Decision Tree

THE GOAL

- To bring clarity in the realm of PQC
 - By creating characteristics matrices for KEMs and DSSs .
 - Inspecting security and implementation aspects.
- To assist in the choice of the most suitable PQC scheme for their application
 - By creating an interactive questionnaire. (Under Development)

The TEAM

Ministerie van Binnenlandse Zaken en Koninkrijksrelaties

Ministerie van Economische Zaken en Klimaat

The scope

Many alternatives, many standards, many recommendations:

- Key-Encapsulation Mechanisms
 - Kyber
 - FrodoKEM
 - Classic McEliece
 - ...
- Digital Signatures
 - Dilithium
 - Falcon
 - SPHINCS+
 - XMSS
 - ...

The scope

Many alternatives, many standards, many recommendations:

- Key-Encapsulation Mechanisms
 - Kyber future NIST standard
 - FrodoKEM future ISO standard
 - Classic McEliece conservative and mature option
 - Digital Signatures
 - Dilithium future NIST standard
 - Falcon future NIST standard
 - SPHINCS+ future NIST standard
 - XMSS already standardized, formally verified implementation exists

The characteristics - implementation

Implementation characteristics:

- Computational complexity
- Memory usage
- Maturity
- Reference implementation

Implemen	ntation			
Ν	Maturity	Hardware Support		
Level of Standardisation	Reference Implementations	Integration in Existing Hardware	Hardware Accelerators	
NIST FIPS 203 (Draft)	pqm4, Wolfssl, liboqs, PQClean, official website	ARM Cortex M53,ARM Cortex-A, ARM Cortex M4, ARM Cortex M4F, ARM Cortex M0+, FPGA , ASIC, SLE 78, AVR Microcontroller, RISC-V,	RISC-V: masked hardware accelerator (no implementation provided), Acceleration using SLE 78 co-processor using standard RSA/ ECC accelerators, Artix 7, Xilinx UltraScale+, AVX2, ARM Cortex -A supporting an AES accelerator	
NIST Round 4	liboqs, Sage implementation, PQClean. pqcryptotw, official website	EPGA ARM Cortex M4	Yiliny Ultracelet AVX2	

The characteristics - security

Security characteristics:

- Security levels
- Validation of hardness assumption
- Reputation
 - Cryptanalysis effort
 - Security assumptions & properties
- Formal verification
- Resistance to SCA

Reputation		Formal Verification	SCA resistance
Security Assumptions	Security Properties	Formally Verified	Mitigations
		Under which assumptions, by which tool?	Are implementation SCA vulnerabilities mitigated?
	XOF is SHAKE-256 only. GPV has natural proofs to sEUF-CMA security in the (q)ROM. However there is no formal proof that FALCON fits the collision resistant preimage sampleable functions	Since there is no formal security argument given, a formal verification of such would require a security proof to be	Constant time implementations exist, but FALCON's heavy use of floating points and the discrete Gaussian sampling subroutine make e.g. maskin based countermeasures

Some considerations...

On the matrix:

- Are we redoing NIST's job?
- Too technical?
- Qualitative vs. Quantitative

KEM	Kyber	McEliece	FrodoKEM
Keygen	++		0
Enc speed	+	0	-
Dec speed	+	0	-
PK size	++	-	0
SK size	++	+	+
Ciphertext size	0	÷	-
Hardness assumptions	+	++	++
Hardware integration	++	0	+
Side channel attacks		++	+

DSS	Falcon	<u>Dilithium</u>	XMSS ¹	SPHINCS+
Keygen	-	+		-
Signing speed	0	+		1.000
Verification speed	+	0		
PK size	0		++	++
SK size		0		++
Signature size	+	0		
Hardness assumptions	0	o	o	+
Hardware integration	++	++	0	+
Side channel attacks	0	+	+	+

Some considerations...

On the decision tree:

- Which characteristics are relevant in which use-cases?
- What is the minimal set of questions to determine the user's context?
- Static tree or interactive tool?
- One recommendation or a ranking with motivation?
 - Are you required to use standardized algorithms?
 - Yes _____
 - No
 - I don't know

Kyber score + 5 (FIPS 203 Draft)

•

- FrodoKem score + 2 (ISO proposal)
- Classic McEliece + 1 (Considered for standardization in round 4)

• to be continued :)

Participate with your Feedback!

Expected Release of the Decision Tree:

- February 2024
- Opensource
- Publish all artifacts

We want this resource to be usable by anyone working on future-proofing their company:

- We would love to assess its practicality and user friendliness.
- If your company is thinking of someday migrating to PQC:

REACH OUT TO US!

Cryptography Conference

PQ SHIELD

Fortanix [®]	KEŸFACTOR	🕅 NOREG
<u></u> 卿 QRL	THALES	d-trust.

amsterdam convention bureau ascettia

