Post-Quantum

Cryptography Conference

CRQC and **Signatures** – no **Problem**?

Jan Klaußner Senior Product Architect at D-Trust

CRQC and Signatures No Problem?

Date:08.11.2023Location:Post-Quantum Cryptography Conference 2023Author:Jan Klaußner

Moscas Theorem and eIDAS

"A qualified electronic signature shall have the equivalent legal effect of a handwritten signature."

eIDAS Regulation, articel 25 para. 2

retired algorithms or keys do not matter

 $\ensuremath{\mathbb{C}}$ 2021 Quantum Threat Timeline Report, Mosca/Piani, 01/2022

• no obligation for archives, regular timestamping or re-signing

A Qualified electronic signature issued today is expected to be legally binding **forever**.

Court case simulation

Disability pension claim

... electronic signature with outdated key length

→ free consideration of evidence

TransiDoc survey 2006

 $\ensuremath{\mathbb{C}}$ Image by rawpixel.com on Freepik

PQC now!

New DSS

A 7

6

1

± 10

* 7

♦ 4

The PQC Signature Zoo

Simple replacement... does it work?

Probably not:

Standard

XMSS*

LMS*

Draft

▲ Dilithium

Sphincs+

▲ Falcon

The Quicksand of PQC

• breakups

- see SIKE, Rainbow
- improvements
 - see switch RSA PKCS1.5 to PSS

• bugs

- see ROCA attack on RSA
- see ECDSA "Psychic Signatures"

• more PQC signatures

• NISTs new competition

New Quantum algorithms

The Quicksand of PQC

• breakups

• see SIKE, Rainbow

improvements

• see switch RSA PKCS1.5 to PSS

o **bugs**

- see ROCA attack on RSA
- see ECDSA "Psychic Signatures"

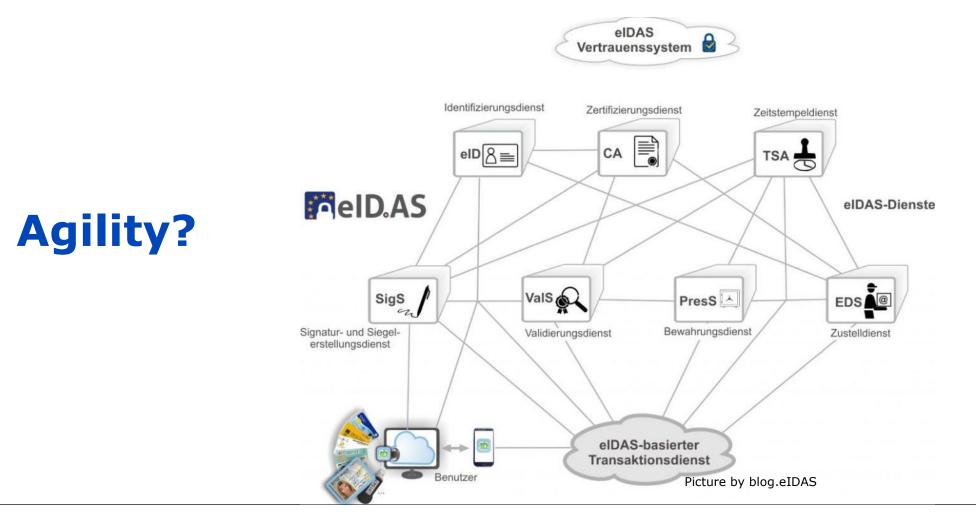
• more PQC signatures

• NISTs new competition

New Quantum algorithms

short term switching

of keys and algorithms


cover security gaps

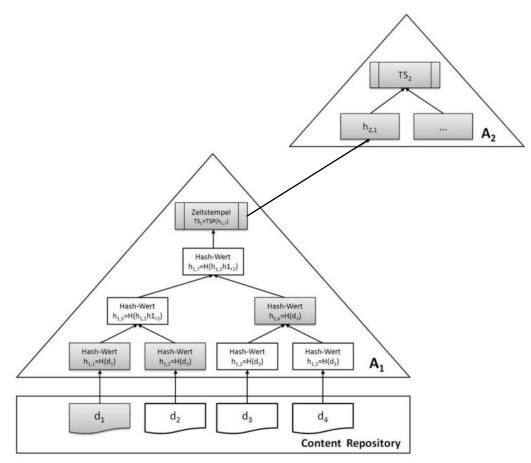
due to weak keys or algorithms

Agility

The Quicksand of PQC and eIDAS

d-trust.

Current Approach

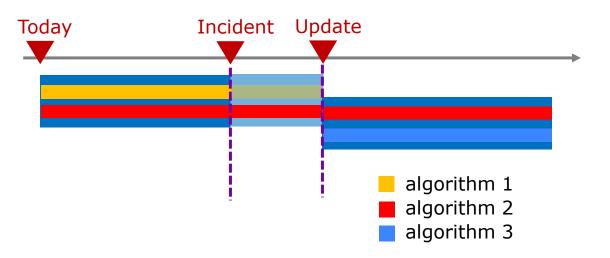

- Timestamps
- AdES digital signatures

o ERS

Timestamps are not for free Maybe two timestamps are required

Will hinder deployment of Digital Signatures

Better make simple signatures last longer!



Hybrid Scheme

use two or more algorithms

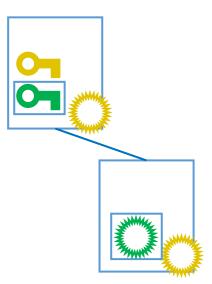
 Combine traditional and/or PQ algorithms

bridges security gap if one fails

Related Certificates

Cryptographic linking of two certificates to same entity

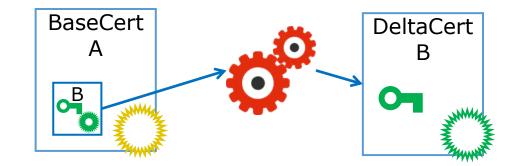
- non-critical X.509v3 extension
- CA validates reference an signs


Standard	•	draft-ietf-lamps-cert-binding-for-multi-auth
No algorithm restriction	\checkmark	
Protocol independent	x	Only X.509 end entity certificates; handling of two PKIs needed
Security implication	x	Usage of related keys out of scope; only one way relation
Backward compatibility	\checkmark	Non-critical extensions are ignored if unknown
Forward compatibility	×	

Isara Catalyst Extension

Additional key and signature in certificate

- X.509v3 extension
- also for CSRs and CRLs


Standard	\checkmark	ITU-T X.509 (10/2019) ISO/IEC 9594-8			
No algorithm restriction	×	Only one extension			
Protocol independent	×	Only X.509 signatures and certificates			
Security implication	× √	Non-critical extension has unclear security Critical extension provides complete security			
Backward compatibility	√ ×	Non-critical extension is ignored if unknown Critical extension is rejected			
Forward compatibility	×				

Chameleon Certificates

Reconstruction of additional certificate from Base certificate

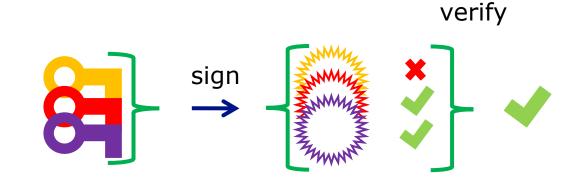
• Non-critical X.509v3 extension

Standard	×	draft-bonnell-lamps-chameleon-certs
No algorithm restriction	×	Only one extension
Protocol independent	•	Only X.509 signatures and certificates; handling of two PKIs needed
Security implication	×	Non-critical extension has unclear security
Backward compatibility	\checkmark	Non-critical extension is ignored if unknown
Forward compatibility	×	

Composite Signatures

Algorithm composes Keys and signatures

- Two component algorithms
- Explicit specification of pairs
- Key pair and signature are
- Both must validate (AND construction)

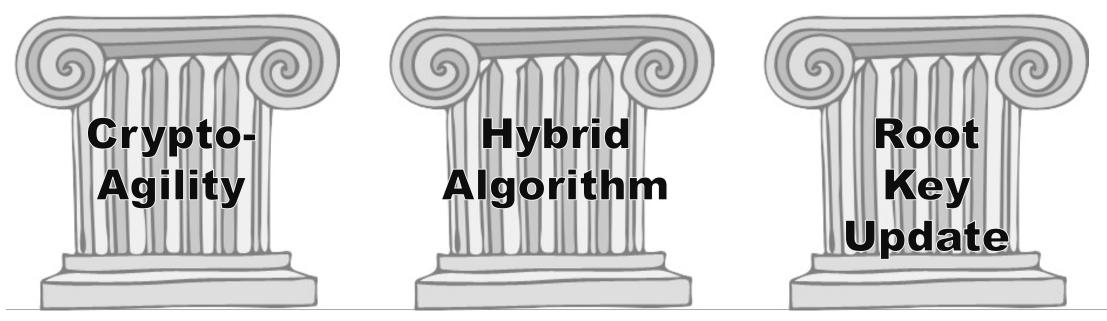

Standard	×	draft-ounsworth-pq-composite-sigs
No algorithm restriction	•	Limited predefined pairs, additional definitions possible
Protocol independent	\checkmark	Transparent to other protocols (X.509, CMS,)
Security implication	\checkmark	
Backward compatibility	×	
Forward compatibility	×	

K-of-N Signatures

Algorithm composes keys and signatures

- N component algorithms allowed
- All component signatures are created
- Only K need to validate
- Generic construction

Standard	×	draft-pala-klaussner-composite-kofn
No algorithm restriction	\checkmark	Generic construction allows algorithm combination up to user
Protocol independent	\checkmark	Transparent to other protocols (X.509, CMS,)
Security implication	\checkmark	
Backward compatibility	×	
Forward compatibility	\checkmark	Unknown components are ignored


The Hybrid Schemes Zoo

	Related Certificates	Isara Catalyst	Chameleon Certificates	Composite Signatures	K-of-N Signatures
Standard	•	\checkmark	×	×	×
No algorithm restriction	\checkmark	×	×	•	\checkmark
Protocol independent	×	×	×	\checkmark	\checkmark
Security implication	×	× √	×	\checkmark	\checkmark
Backward compatibility	\checkmark	√ ×	\checkmark	×	×
Forward compatibility	×	×	×	×	\checkmark

The Agile PKI

Automated, flexible processes for PKIs to support switching of keys and algorithms without interruption of security and operation.

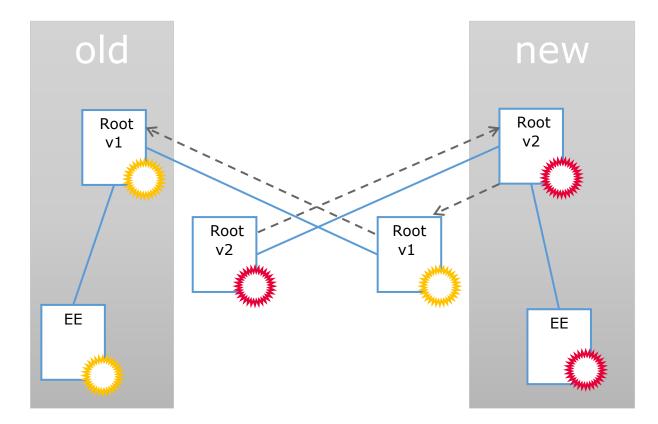
Crypto-Agility

(1) the ability for machines to **select their security algorithms** in real time and based on their combined security functions;

(2) the ability to **add new cryptographic features or algorithms** to existing hardware or software, resulting in new, stronger security features;

and (3) the ability to gracefully **retire cryptographic systems** that have become either vulnerable or obsolete.

Source: McKay in Anne Frances Johnson and Lynette I. Millett (Eds.). 2017. Cryptographic Agility and Interoperability: Proceedings of a Workshop. The National Academies Press, Washington, DC. https://doi.org/10.17226/24636



Root Key Update

cross-certification of root certificates

forward compatibility:
 old clients trust new root

 automated migration: install new root

Key takeaway points

- Todays digital signatures have legal effect beyond CRQC
- No drop in replacement of traditional algorithms
- Agile PKI needed
 - Hybrid Algorithms
 - Crypto agile system components
 - Root key update

Jan Klaußner

Senior Product Architect Email: jan.klaussner@bdr.de Mobile: + 49 (0) 151 5600 1986

Thank You.

Please note: This presentation is the property of D-Trust GmbH. All of the information contained herein may not be copied, distributed or published, as a whole or in part, without the approval of D-Trust GmbH.

© 2023 by D-Trust GmbH

Cryptography Conference

PQ SHIELD

Fortanix [®]	KEŸFACTOR	🕅 NOREG
(a) QRL	THALES	d-trust.

amsterdam convention bureau

ascertia

