
Cryptography Conference

Post-Quantum

Francisco José Vial-Prado
Senior Cryptography Engineer at Fortanix

LMS: Lighter, faster key generation

LMS: Faster key generation, lighter keys

Francisco José Vial-Prado

Post-Quantum Cryptography Conference
7-8 November, 2023, Amsterdam (NL)

This talk
◮ Introduction to LMS (Also see Volker Krummel’s talk before lunch “Stateful

Hash-Based Signature Schemes”)

◮ Faster key generation (Remarks on SIMD versions of RFC8554 algorithms)
◮ Key size/signature speed trade-offs (Recalling the “treehash” algorithms)

NOT This talk
State management, interoperability, export restrictions …

This talk
◮ Introduction to LMS (Also see Volker Krummel’s talk before lunch “Stateful

Hash-Based Signature Schemes”)

◮ Faster key generation (Remarks on SIMD versions of RFC8554 algorithms)
◮ Key size/signature speed trade-offs (Recalling the “treehash” algorithms)

NOT This talk
State management, interoperability, export restrictions …

LMS = LM-OTS/LMS/HSS…

LMS is a stateful hash-based signature scheme
◮ Key generation requires hashing
◮ Signing a message requires hashing
◮ Verifying a signature requires hashing

Also...

There is an internal state that MUST evolve upon signing (typically, one counter).

LMS keys can be organized into HSS keys, augmenting capacity

LMS = LM-OTS/LMS/HSS…

LMS is a stateful hash-based signature scheme
◮ Key generation requires hashing
◮ Signing a message requires hashing
◮ Verifying a signature requires hashing

Also...
◮ There is an internal state that MUST evolve upon signing (typically, one counter).
◮ LMS keys can be organized into HSS keys, augmenting capacity

LMS = LM-OTS/LMS/HSS…

LM-OTS key LMS key HSS key
×2h (≤ 225) ×k (≤ 8)

(1 sig) (h sigs) h hk sigs)

Keygen:

hashes

(use once)

h hashes
(maintain state)

k sigs

(rotate exhausted LMS keys)

LMS = LM-OTS/LMS/HSS…

LM-OTS key LMS key HSS key
×2h (≤ 225) ×k (≤ 8)

(1 sig) (2h sigs) (2h1+···+hk sigs)

Keygen:

hashes

(use once)

h hashes
(maintain state)

k sigs

(rotate exhausted LMS keys)

LMS = LM-OTS/LMS/HSS…

LM-OTS key LMS key HSS key
×2h (≤ 225) ×k (≤ 8)

(1 sig) (2h sigs) (2h1+···+hk sigs)

Keygen:

34 × 255 + 34 hashes

(use once)
2h+1 hashes

(maintain state)

k − 1 sigs

(rotate exhausted LMS keys)

LMS = LM-OTS/LMS/HSS…
1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

LMS pubkey

SK16 SK17
. . . SK21 SK22

. . . SK31

(8
7
0
4
ha
sh
es
)

LM
-O
TS

ke
y

seedH

LMS = LM-OTS/LMS/HSS…
1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

LMS pubkey

SK16 SK17
. . . SK21 SK22

. . . SK31

(8
7
0
4
ha
sh
es
)

LM
-O
TS

ke
y

seedH

Single leaf calculation

22SK22
LM-OTS key

x

x

...

x

h x h x h x

h x h x h x

h x h x h x

...

Single leaf calculation

22SK22
LM-OTS key

x[0]

x[1]

...

x[33]

h1(x[0]) h2(x[0]) . . . h255(x[0])

h1(x[1]) h2(x[1]) . . . h255(x[1])

h1(x[33]) h2(x[33]) . . . h255(x[33])

...

SHA-256 in SIMD is EasyTM

◮ SHA-256 operates on 32-bit words
◮ Only uses bit shifts, rotation, and wrapping addition

Can compute LANES hash values In One Go!

SHA-256 in SIMD is EasyTM

◮ SHA-256 operates on 32-bit words
◮ Only uses bit shifts, rotation, and wrapping addition
◮ Can compute LANES hash values In One Go!

Single leaf calculation

22SK22
LM-OTS key

x[0]

x[1]

x[2]

x[3]

h1(x[0])

h1(x[1])

h1(x[2])

h1(x[3])

h2(x[0])

h2(x[1])

h2(x[2])

h2(x[3])

. . .

h255(x[0])

h255(x[1])

h255(x[2])

h255(x[3])

SIMD4

LANES THREADS
calls

Single leaf calculation

22SK22
LM-OTS key

x[0]

x[1]

x[2]

x[3]

h1(x[0])

h1(x[1])

h1(x[2])

h1(x[3])

h2(x[0])

h2(x[1])

h2(x[2])

h2(x[3])

. . .

h255(x[0])

h255(x[1])

h255(x[2])

h255(x[3])

SIMD4

⇒

⌈

34

LANES×THREADS

⌉

× 255 + 34 calls

LM-OTS signing
22SK22

LM-OTS key

...

h2(x[0]) . . . h255(x[0])

h1(x[1]) h2(x[1]) . . . h255(x[1])

h42(x[33]) . . . h255(x[33])

...

Signer reveals intermediate values
Verifier hashes again

(Message dependency ends here)

LMS signing
1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

LMS pubkey

SK16 SK17
. . . SK21 SK22

. . . SK31

m

Signer needs to provide {23, 10, 4, 3}
Verifier hashes again

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h hashes! (bytes)

LMS root (RFC8554 app. C)

31

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

30

22

18

16 17

21

19 20

29

25

23 24

28

26 27

Get to the root with a stack of h − 1 hashes! (≤ 768 bytes)

LMS root (RFC8554 app. C)
// Generating an LMS Public Key from an LMS Private Key

for (i = 0; i < 2^h; i = i + 1) {
r = i + 2^h;
temp = H(I || r || "D_LEAF" || OTS_PUB_HASH[i]) // Compute leaf
j = i;
while (j % 2 == 1) {

r = (r - 1) / 2;
j = (j - 1) / 2;
left = pop(data stack);
temp = H(I || r || "D_INTR" || left || temp) // Compute branch

}
push temp onto the data stack

}
public_key = pop(data stack)

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log LANES with a stack of h LANES SIMD calls

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log LANES with a stack of h LANES SIMD calls

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log LANES with a stack of h LANES SIMD calls

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log LANES with a stack of h LANES SIMD calls

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log LANES with a stack of h LANES SIMD calls

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log LANES with a stack of h LANES SIMD calls

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log LANES with a stack of h LANES SIMD calls

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log LANES with a stack of h LANES SIMD calls

SIMD LMS root (LANES = 4)
Stack = vector of arrays of LANES nodes.

As soon as 2× LANES neighbour nodes are available, hash them into LANES nodes.

31

29

25

9

1 2

10

3 4

26

11

5 6

12

7 8

30

27

21

13 14

22

15 16

28

23

17 18

24

19 20

Get to level log(LANES) with a stack of (h − 1)× LANES SIMD calls

for (i = 0; i < 2^h; i = i + LANES) {
r = i + 2^h;
temp = H(

I || r + 0..LANES || "D_LEAF" || OTS_PUB_HASH[0..LANES]
)
j = i / LANES;
while (j % 2 == 1) {

r = (r - LANES) / 2;
j = (j - LANES) / 2;
left = pop(data stack);
temp = H(

I || r + [0..LANES] || "D_INTR" || left || temp[0..LANES]
)

}
push temp onto the data stack

}
// Compute levels [0..log(LANES)]

SIMD LMS KeyGen

LM-OTS key LMS key HSS key
×2h (≤ 225) ×k (≤ 8)

LANES THREADS
h

LANES THREADS
k

THREADS sigs

SIMD LMS KeyGen

LM-OTS key LMS key HSS key
×2h (≤ 225) ×k (≤ 8)

⌈

34
LANES·THREADS

⌉

· 255 + 34
⌈

2h+1

LANES·THREADS

⌉

⌈

k−1
THREADS

⌉

sigs

1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

LMS pubkey

Light, slow
Remember the state and seed

Heavy, fast
Remember everything

Everything = h bytes (GB)

1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

LMS pubkey

Light, slow
Remember the state and seed

Heavy, fast
Remember everything

Everything = h bytes (GB)

1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

LMS pubkey

Light, slow
Remember the state and seed

Heavy, fast
Remember everything

Everything = h bytes (GB)

1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

LMS pubkey

Light, slow
Remember the state and seed

Heavy, fast
Remember everything

Everything = 2h+1 × 32 bytes (≤ 2.14 GB)

Node lifetime

life(h, 0) = [0, 2) (leftmost leaf)
life(h, 2) = [2, 4)

life(h − 1, 0) = [0, 4)

life(1, 0) = [0, 2h) (left child of root)
life(1, 1) = [0, 2h) (right child of root)

...

life l i h l i h l i

At level l h , node i l lives during h l signatures

Node lifetime

life(h, 0) = [0, 2) (leftmost leaf)
life(h, 2) = [2, 4)

life(h − 1, 0) = [0, 4)

life(1, 0) = [0, 2h) (left child of root)
life(1, 1) = [0, 2h) (right child of root)

...

life(l, i) =
[

2h−l+1 ⌊i/2⌋ , 2h−l+1 ⌈(i + 1)/2⌉
)

At level l ∈ {1, . . . , h}, node i ∈ {0, . . . , 2l − 1} lives during 2h−l+1 − 1 signatures

Small-Memory LM Schemes
2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

. . .

. . .

. . .

. . .

N algorithm

Remember top h levels entirely. On level l h , remember nodes l h .
Remember leaves h h .

Small-Memory LM Schemes
2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

. . .

. . .

. . .

. . .

N1/2 algorithm

Remember top h/2 levels entirely. On level l > h/2, remember nodes {0, . . . , 2l−h/2}.
Remember leaves {0, . . . , 2h/2 + h/2}.

Small-Memory LM Schemes
2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

. . .

. . .

. . .

. . .

N1/2 algorithm

Remember top h/2 levels entirely. On level l > h/2, remember nodes {0, . . . , 2l−h/2}.
Remember leaves {0, . . . , 2h/2 + h/2}.

2
0

2
1

2
2

2
3

2
4

2
5

2
1

2
2

2
3

2
4

2
5
+ 5

Small-Memory LM Schemes
Slide windows after signing

At signature k, compute one leaf and upper
branches as possible. Forget leaves left of
L := k − 2h/2 − h/2 and nodes left of L/2h−l .

State
“State” = counter cached nodes.

2.14 GB 1 MB for h and SHA-256

Small-Memory LM Schemes
Slide windows after signing

At signature k, compute one leaf and upper
branches as possible. Forget leaves left of
L := k − 2h/2 − h/2 and nodes left of L/2h−l .

State
“State” = counter + cached nodes.

2.14 GB→ 1 MB for h = 25 and SHA-256

All together!
SHA-256 in SIMD is easy!

KeyGen
◮ Use SIMD/multithreading to compute leaves
◮ Use SIMD/multithreading to get to the root faster
◮ Remember node windows according to N1/2 algorithm

Sign
Use SIMD/multithreading to compute one leaf (L T calls)

Compute at most h branches

Forget nodes left nodes past their lifetime

Release signature AFTER

All together!
SHA-256 in SIMD is easy!

KeyGen
◮ Use SIMD/multithreading to compute leaves
◮ Use SIMD/multithreading to get to the root faster
◮ Remember node windows according to N1/2 algorithm

Sign
◮ Use SIMD/multithreading to compute one leaf (⌈34/(L · T)⌉ · 255 + 34 calls)
◮ Compute at most h/2 branches
◮ Forget nodes left nodes past their lifetime
◮ Release signature AFTER

Thank you!
1

2

4 5

10 11

22

44 45

23

46 47

3

6

12

24

48 49

7

SK44 (sig # 12)

LM
-O
TS

ke
y

seed

LMS: Faster key generation, lighter keys

Francisco José Vial-Prado

Post-Quantum Cryptography Conference
7-8 November, 2023, Amsterdam (NL)

Cryptography Conference

Post-Quantum

	Slide 195
	
	
	Slide 118

