
Cryptography Conference

Post-Quantum

Bor de Kock
Assistant Professor of Cryptology at NTNU Trondheim

Symmetric Key Exchange:

Lightweight Alternatives for a Post-Quantum IoT

Symmetric Key Exchange: Lightweight
Alternatives for a Post-Quantum IoT

Bor de Kock

Post-Quantum Cryptography Conference

November 8, 2023

2

About me
Bor de Kock, assistant professor cryptology

• MSc from Eindhoven University of Technology

• PhD on Post-Quantum Key Exchange, from NTNU

My research interests:

Post-quantum cryptography, key exchange, password-based crypto,
authentication, security models, ratcheting, etc.

 in other words: practical crypto!

3

4

Norwegian University
of Science and Technology

Trondheim, Gjøvik and Ålesund

Largest university in Norway

43.000 students

32 cryptographers

5

Let’s talk key exchange…

5

Let’s talk key exchange…

• Making key exchange post-quantum is an ongoing effort

5

Let’s talk key exchange…

• Making key exchange post-quantum is an ongoing effort

• Most serious candidates are inefficient, compared to SoA

5

Let’s talk key exchange…

• Making key exchange post-quantum is an ongoing effort

• Most serious candidates are inefficient, compared to SoA

5

Let’s talk key exchange…

• Making key exchange post-quantum is an ongoing effort

• Most serious candidates are inefficient, compared to SoA

• Symmetric algorithms such as AES are post-quantum

5

Let’s talk key exchange…

• Making key exchange post-quantum is an ongoing effort

• Most serious candidates are inefficient, compared to SoA

• Symmetric algorithms such as AES are post-quantum

• Symmetric algorithms such as AES are very efficient

5

Let’s talk key exchange…

• Making key exchange post-quantum is an ongoing effort

• Most serious candidates are inefficient, compared to SoA

• Symmetric algorithms such as AES are post-quantum

• Symmetric algorithms such as AES are very efficient

• Many security features we like are missing.

6

What do we want to achieve?

6

What do we want to achieve?

• Authenticated key exchange for very constrained devices

6

What do we want to achieve?

• Authenticated key exchange for very constrained devices

• Pre-shared symmetric keys

6

What do we want to achieve?

• Authenticated key exchange for very constrained devices

• Pre-shared symmetric keys

• Forward security

6

What do we want to achieve?

• Authenticated key exchange for very constrained devices

• Pre-shared symmetric keys

• Forward security

• Synchronization

6

What do we want to achieve?

• Authenticated key exchange for very constrained devices

• Pre-shared symmetric keys

• Forward security

• Synchronization

• Concurrent Correctness

7

In this talk…

Symmetric Key Exchange with Full Forward Security

and Robust Synchronization
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and Lise Millerjord

7

In this talk…

• 3 very efficient AKE protocols with linear key evolution

Symmetric Key Exchange with Full Forward Security

and Robust Synchronization
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and Lise Millerjord

7

In this talk…

• 3 very efficient AKE protocols with linear key evolution

• 2 AKE protocols with non-linear key evolution

Symmetric Key Exchange with Full Forward Security

and Robust Synchronization
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and Lise Millerjord

7

In this talk…

• 3 very efficient AKE protocols with linear key evolution

• 2 AKE protocols with non-linear key evolution

• Framework for protocol analysis

Symmetric Key Exchange with Full Forward Security

and Robust Synchronization
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and Lise Millerjord

7

In this talk…

• 3 very efficient AKE protocols with linear key evolution

• 2 AKE protocols with non-linear key evolution

• Framework for protocol analysis

• Formalization of synchronization robustness as a security
property

Symmetric Key Exchange with Full Forward Security

and Robust Synchronization
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and Lise Millerjord

8

Authenticated Key Exchange - AKE

8

Authenticated Key Exchange - AKE

BobAlice

8

Authenticated Key Exchange - AKE

Bob

KAB KAB

Alice

8

Authenticated Key Exchange - AKE

Bob

KAB KAB

Alice

8

Authenticated Key Exchange - AKE

Bob

KAB KAB

Alice

KS KS

9

Forward Security

9

Forward Security
BobAlice

KAB
KAB

9

Forward Security
BobAlice

KAB
KAB

KS1 KS1

9

Forward Security
BobAlice

KAB
KAB

KS1 KS1

KS2 KS2

9

Forward Security
BobAlice

KAB
KAB

KS1 KS1

KS2 KS2

9

Forward Security
BobAlice

KAB
KAB

KS1 KS1

KS2 KS2

KAB

9

Forward Security
BobAlice

KAB
KAB

KS1 KS1

KS2 KS2

KS2KAB

9

Forward Security
BobAlice

KAB
KAB

KS1 KS1

KS2 KS2

KS2KAB

KS1

10

Achieving Forward Security

10

Achieving Forward Security

• Evolve keys to obtain forward security

10

Achieving Forward Security

• Evolve keys to obtain forward security

• Time-based evolution [Dousti and Jalili, 2015]

10

Achieving Forward Security

• Evolve keys to obtain forward security

• Time-based evolution [Dousti and Jalili, 2015]

• Triggered evolution: evolve after session key derivation

11

Challenges

11

Challenges

• Synchronization - both parties needs to have evolved the
same number of steps

11

Challenges

• Synchronization - both parties needs to have evolved the
same number of steps

• Concurrent correctness – parallel sessions cause
problems when one session evolves shared key material
before the other session is ready

11

Challenges

• Synchronization - both parties needs to have evolved the
same number of steps

• Concurrent correctness – parallel sessions cause
problems when one session evolves shared key material
before the other session is ready

Protocol Auth. # of
Messages

Sync. Rob.
Weak Full

Conc.
Corr.

Forward
Security

SAKE [ACF20] Mutual 5 ❌ ❌ ❌

SAKE-AM [ACF20] Mutual 4 ❌ ❌ ❌

12

Example protocol: LP2

12

Example protocol: LP2
BobAlice

KAB
KAB

12

Example protocol: LP2
BobAlice

KAB
KAB

12

Example protocol: LP2
BobAlice

KAB
KAB

CTR = 0 CTR = 0

12

Example protocol: LP2
BobAlice

KAB
KAB

CTR = 0 CTR = 0

KMKM

12

Example protocol: LP2
BobAlice

KAB
KAB

CTR = 0 CTR = 0

KMKM

CTR = 1
MAC

12

Example protocol: LP2
BobAlice

KAB
KAB

CTR = 0 CTR = 0

Accept?

KMKM

CTR = 1
MAC

12

Example protocol: LP2
BobAlice

KAB
KAB

CTR = 0 CTR = 0

Accept?

KMKM

CTR = 1
MAC

CTR = 1
MAC

12

Example protocol: LP2
BobAlice

KAB
KAB

CTR = 0 CTR = 0

Accept?

KS  Key-derivation(KAB)

KAB  Evolve(KAB)

CTR = CTR + 1 = 2

KMKM

CTR = 1
MAC

CTR = 1
MAC

12

Example protocol: LP2
BobAlice

KAB
KAB

CTR = 0 CTR = 0

Accept?

KS  Key-derivation(KAB)

KAB  Evolve(KAB)

CTR = CTR + 1 = 2

Accept?

KMKM

CTR = 1
MAC

CTR = 1
MAC

12

Example protocol: LP2
BobAlice

KAB
KAB

CTR = 0 CTR = 0

Accept?

KS  Key-derivation(KAB)

KAB  Evolve(KAB)

CTR = CTR + 1 = 2

Accept?

KS  Key-derivation(KAB)

KAB  Evolve(KAB)

CTR = CTR + 1 = 2

KMKM

CTR = 1
MAC

CTR = 1
MAC

13

Example protocol: LP2

CTR = 2 CTR = 2

BobAlice

KAB
KAB

KM
KM

13

Example protocol: LP2

CTR = 2 CTR = 2

CTR = 3

BobAlice

KAB
KAB

KM
KM

13

Example protocol: LP2

CTR = 2 CTR = 2

CTR = 3 Accept?

BobAlice

KAB
KAB

KM
KM

13

Example protocol: LP2

CTR = 2 CTR = 2

CTR = 3 Accept?

Derive session key
Evolve KAB

CTR = 4

CTR = 3

BobAlice

KAB
KAB

KM
KM

13

Example protocol: LP2

CTR = 2 CTR = 2

CTR = 3 Accept?

Derive session key
Evolve KAB

CTR = 4

CTR = 3

BobAlice

KAB
KAB

KM
KM

13

Example protocol: LP2

CTR = 2 CTR = 2

CTR = 3 Accept?

Derive session key
Evolve KAB

CTR = 4

CTR = 3

Next session:
CTR = 5

BobAlice

KAB
KAB

KM
KM

14

Linear-evolving protocols

14

Linear-evolving protocols

• 3 protocols – 1, 2 and 3 messages

14

Linear-evolving protocols

• 3 protocols – 1, 2 and 3 messages

• 1-message protocol: one-way authentication

14

Linear-evolving protocols

• 3 protocols – 1, 2 and 3 messages

• 1-message protocol: one-way authentication

• 3-message protocol: key confirmation, bounded gap

14

Linear-evolving protocols

• 3 protocols – 1, 2 and 3 messages

• 1-message protocol: one-way authentication

• 3-message protocol: key confirmation, bounded gap

Protocol Auth. # of
Messages

Sync. Rob.
Weak Full

Conc.
Corr.

Forward
Security

LP1 R only 1 ❌ ❌

LP2 Mutual 2 ❌ ❌

LP3 Mutual 3 ❌ ❌

15

Security model

15

Security model

• Framework for protocol analysis

15

Security model

• Framework for protocol analysis

• AKE model from [Bellare Rogaway 94, Li et al 2014]

15

Security model

• Framework for protocol analysis

• AKE model from [Bellare Rogaway 94, Li et al 2014]

• Model lacks notion of concurrent correctness and
synchronization

15

Security model

• Framework for protocol analysis

• AKE model from [Bellare Rogaway 94, Li et al 2014]

• Model lacks notion of concurrent correctness and
synchronization

• Formalization of synchronization robustness – the ability to
compute keys in future sessions if something goes wrong

16

Concurrent Correctness
BobAlice

KAB
KAB

KM
KM

CTR = 0 CTR = 0

16

Concurrent Correctness
BobAlice

KAB
KAB

KM
KM

CTR = 0 CTR = 0

Initiate session 1: CTR = 1
CTR = 1

16

Concurrent Correctness
BobAlice

KAB
KAB

KM
KM

CTR = 0 CTR = 0

Initiate session 1: CTR = 1
CTR = 1

Accept?

CTR = 1, session completes,
Bob accepts with CTR = 2

CTR = 1

16

Concurrent Correctness
BobAlice

KAB
KAB

KM
KM

CTR = 0 CTR = 0

Initiate session 1: CTR = 1
CTR = 1

Accept?

CTR = 1, session completes,
Bob accepts with CTR = 2

CTR = 1

CTR = 3
Initiate session 2: CTR = 3

16

Concurrent Correctness
BobAlice

KAB
KAB

KM
KM

CTR = 0 CTR = 0

Initiate session 1: CTR = 1
CTR = 1

Accept?

CTR = 1, session completes,
Bob accepts with CTR = 2

CTR = 1

CTR = 3
Initiate session 2: CTR = 3

Accept?
Alice is at CTR = 3,
Aborts session 1

16

Concurrent Correctness
BobAlice

KAB
KAB

KM
KM

CTR = 0 CTR = 0

Initiate session 1: CTR = 1
CTR = 1

Accept?

CTR = 1, session completes,
Bob accepts with CTR = 2

CTR = 1

CTR = 3
Initiate session 2: CTR = 3

Accept?
CTR = 3, session completes,
Bob accepts with CTR = 4

CTR = 3

Accept?
Alice is at CTR = 3,
Aborts session 1

16

Concurrent Correctness
BobAlice

KAB
KAB

KM
KM

CTR = 0 CTR = 0

Initiate session 1: CTR = 1
CTR = 1

Accept?

CTR = 1, session completes,
Bob accepts with CTR = 2

CTR = 1

CTR = 3
Initiate session 2: CTR = 3

Accept?
CTR = 3, session completes,
Bob accepts with CTR = 4

CTR = 3

Accept?
Alice is at CTR = 3,
Aborts session 1

Accept?
Alice accepts with CTR = 4

17

Synchronization Robustness

17

Synchronization Robustness

• Captures the ability of two parties succeeding in
exchanging a session key in the future, no matter what has
happened previously.

17

Synchronization Robustness

• Captures the ability of two parties succeeding in
exchanging a session key in the future, no matter what has
happened previously.

• If the parties get out of sync, we need to be able to
resynchronize.

17

Synchronization Robustness

• Captures the ability of two parties succeeding in
exchanging a session key in the future, no matter what has
happened previously.

• If the parties get out of sync, we need to be able to
resynchronize.

• This definition formalizes this requirement and comes in a
weak and a strong flavour.

18

Weak Synchronization Robustness

18

Weak Synchronization Robustness

• Definition: Any honestly executed, uninterrupted session
will succeed no matter what has happened before.

18

Weak Synchronization Robustness

• Definition: Any honestly executed, uninterrupted session
will succeed no matter what has happened before.
– Concurrent sessions were initiated

18

Weak Synchronization Robustness

• Definition: Any honestly executed, uninterrupted session
will succeed no matter what has happened before.
– Concurrent sessions were initiated
– Messages in previous sessions were dropped, reordered or altered

(so that they were not accepted)

18

Weak Synchronization Robustness

• Definition: Any honestly executed, uninterrupted session
will succeed no matter what has happened before.
– Concurrent sessions were initiated
– Messages in previous sessions were dropped, reordered or altered

(so that they were not accepted)
– Parties are arbitrarily many steps out of sync

18

Weak Synchronization Robustness

• Definition: Any honestly executed, uninterrupted session
will succeed no matter what has happened before.
– Concurrent sessions were initiated
– Messages in previous sessions were dropped, reordered or altered

(so that they were not accepted)
– Parties are arbitrarily many steps out of sync
– Either way: the next session Alice and Bob are allowed to execute

without any interruption will succeed

18

Weak Synchronization Robustness

• Definition: Any honestly executed, uninterrupted session
will succeed no matter what has happened before.
– Concurrent sessions were initiated
– Messages in previous sessions were dropped, reordered or altered

(so that they were not accepted)
– Parties are arbitrarily many steps out of sync
– Either way: the next session Alice and Bob are allowed to execute

without any interruption will succeed

• LP2: Allowing role reversal will make the protocol fail to
meet this requirement

19

Full Synchronization Robustness

19

Full Synchronization Robustness

• Definition: Any honestly executed session will succeed, no
matter what else is going on with concurrent sessions or
previous sessions.

19

Full Synchronization Robustness

• Definition: Any honestly executed session will succeed, no
matter what else is going on with concurrent sessions or
previous sessions.
– Arbitrary many concurrent sessions are allowed

19

Full Synchronization Robustness

• Definition: Any honestly executed session will succeed, no
matter what else is going on with concurrent sessions or
previous sessions.
– Arbitrary many concurrent sessions are allowed

– The adversary may interleave messages with concurrent sessions
arbitrarily

19

Full Synchronization Robustness

• Definition: Any honestly executed session will succeed, no
matter what else is going on with concurrent sessions or
previous sessions.
– Arbitrary many concurrent sessions are allowed

– The adversary may interleave messages with concurrent sessions
arbitrarily

– The adversary may make any previous or concurrent sessions fail,
but the one that is allowed to complete honestly will succeed

19

Full Synchronization Robustness

• Definition: Any honestly executed session will succeed, no
matter what else is going on with concurrent sessions or
previous sessions.
– Arbitrary many concurrent sessions are allowed

– The adversary may interleave messages with concurrent sessions
arbitrarily

– The adversary may make any previous or concurrent sessions fail,
but the one that is allowed to complete honestly will succeed

• Linearly evolving protocols fail this requirement

20

Non-linear key evolution

20

Non-linear key evolution
• Need something different to achieve full synchronization robustness

20

Non-linear key evolution
• Need something different to achieve full synchronization robustness
• Use puncturable pseudorandom functions [Sahai Waters 2014]

20

Non-linear key evolution
• Need something different to achieve full synchronization robustness
• Use puncturable pseudorandom functions [Sahai Waters 2014]
• Definition: A PPRF is a PRF with an extra algorithm PUNCT(k, x) such

that
– Evaluating on a punctured value fails
– Puncturing on an already punctured value returns the same key
– Puncturing is commutative – the order in which you puncture values does not

matter

20

Non-linear key evolution
• Need something different to achieve full synchronization robustness
• Use puncturable pseudorandom functions [Sahai Waters 2014]
• Definition: A PPRF is a PRF with an extra algorithm PUNCT(k, x) such

that
– Evaluating on a punctured value fails
– Puncturing on an already punctured value returns the same key
– Puncturing is commutative – the order in which you puncture values does not

matter

• Session key is determined by evaluating on the session nonce

20

Non-linear key evolution
• Need something different to achieve full synchronization robustness
• Use puncturable pseudorandom functions [Sahai Waters 2014]
• Definition: A PPRF is a PRF with an extra algorithm PUNCT(k, x) such

that
– Evaluating on a punctured value fails
– Puncturing on an already punctured value returns the same key
– Puncturing is commutative – the order in which you puncture values does not

matter

• Session key is determined by evaluating on the session nonce
• All concurrent sessions can succeed: puncturing only affects key

material of that particular session

21

The non-linearly evolving protocols

Protocol Auth. # of
Messages

Sync. Rob.
Weak Full

Conc.
Corr.

Forward
Security

PP1 R only 1

PP2 Mutual 2

22

All our protocols

Protocol Auth. # of
Messages

Sync. Rob.
Weak Full

Conc.
Corr.

Forward
Security

SAKE [ACF20] Mutual 5 ❌ ❌ ❌

SAKE-AM [ACF20] Mutual 4 ❌ ❌ ❌

LP1 R only 1 ❌ ❌

LP2 Mutual 2 ❌ ❌

LP3 Mutual 3 ❌ ❌

PP1 R only 1

PP2 Mutual 2

23

Concluding…

23

Concluding…

• Symmetric cryptography: it’s more relevant than you think

23

Concluding…

• Symmetric cryptography: it’s more relevant than you think

• Post-Quantum ≠ Key Exchange and Signatures

23

Concluding…

• Symmetric cryptography: it’s more relevant than you think

• Post-Quantum ≠ Key Exchange and Signatures

• We need to rethink our systems, not just our protocols

23

Concluding…

• Symmetric cryptography: it’s more relevant than you think

• Post-Quantum ≠ Key Exchange and Signatures

• We need to rethink our systems, not just our protocols

23

Concluding…

• Symmetric cryptography: it’s more relevant than you think

• Post-Quantum ≠ Key Exchange and Signatures

• We need to rethink our systems, not just our protocols

With regard to our work…

23

Concluding…

• Symmetric cryptography: it’s more relevant than you think

• Post-Quantum ≠ Key Exchange and Signatures

• We need to rethink our systems, not just our protocols

With regard to our work…

• Implementation efforts are underway

23

Concluding…

• Symmetric cryptography: it’s more relevant than you think

• Post-Quantum ≠ Key Exchange and Signatures

• We need to rethink our systems, not just our protocols

With regard to our work…

• Implementation efforts are underway

• No real world test data yet, but theoretical analysis promising

23

Concluding…

• Symmetric cryptography: it’s more relevant than you think

• Post-Quantum ≠ Key Exchange and Signatures

• We need to rethink our systems, not just our protocols

With regard to our work…

• Implementation efforts are underway

• No real world test data yet, but theoretical analysis promising

• Let me know if you want to get involved!

24

More info?

Symmetric Key Exchange with Full Forward Security

and Robust Synchronization
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and Lise Millerjord

IACR ePrint 2021 / 702

@bordekock

bor.dekock@ntnu.no

mailto:bor.dekock@ntnu.no

Cryptography Conference

Post-Quantum

	Slide 76
	Slide 118

