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About me
Bor de Kock, assistant professor cryptology 

• MSc from Eindhoven University of Technology  

• PhD on Post-Quantum Key Exchange, from NTNU 

My research interests: 

Post-quantum cryptography, key exchange, password-based crypto, 
authentication, security models, ratcheting, etc. 

                   in other words: practical crypto!
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of Science and Technology

Trondheim, Gjøvik and Ålesund 

Largest university in Norway 

43.000 students 

32 cryptographers
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Let’s talk key exchange…

• Making key exchange post-quantum is an ongoing effort

• Most serious candidates are inefficient, compared to SoA

• Symmetric algorithms such as AES are post-quantum

• Symmetric algorithms such as AES are very efficient

• Many security features we like are missing. 
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What do we want to achieve?

• Authenticated key exchange for very constrained devices

• Pre-shared symmetric keys

• Forward security

• Synchronization

• Concurrent Correctness
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In this talk…

• 3 very efficient AKE protocols with linear key evolution

• 2 AKE protocols with non-linear key evolution

• Framework for protocol analysis

• Formalization of synchronization robustness as a security 
property

Symmetric Key Exchange with Full Forward Security  

and Robust Synchronization 
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and Lise Millerjord
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Achieving Forward Security

• Evolve keys to obtain forward security

• Time-based evolution [Dousti and Jalili, 2015]

• Triggered evolution: evolve after session key derivation
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Challenges

• Synchronization - both parties needs to have evolved the 
same number of steps

• Concurrent correctness – parallel sessions cause 
problems when one session evolves shared key material 
before the other session is ready

Protocol Auth. # of
Messages

Sync. Rob.
Weak       Full

Conc. 
Corr.

Forward 
Security

SAKE [ACF20] Mutual 5 ❌ ❌ ❌

SAKE-AM [ACF20] Mutual 4 ❌ ❌ ❌
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KAB

CTR = 0 CTR = 0

Accept?

KS   Key-derivation(KAB) 

KAB  Evolve(KAB) 

CTR = CTR + 1 = 2

Accept?

KS   Key-derivation(KAB) 
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KMKM

CTR = 1
MAC
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Example protocol: LP2

CTR = 2 CTR = 2

CTR = 3 Accept?

Derive session key 
Evolve KAB 

CTR = 4

CTR = 3

Next session: 
CTR = 5

BobAlice 

KAB
KAB

KM
KM
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Linear-evolving protocols

• 3 protocols – 1, 2 and 3 messages

• 1-message protocol: one-way authentication

• 3-message protocol: key confirmation, bounded gap

Protocol Auth. # of 
Messages

Sync. Rob. 
Weak       Full

Conc. 
Corr.

Forward 
Security

LP1 R only 1 ❌ ❌

LP2 Mutual 2 ❌ ❌

LP3 Mutual 3 ❌ ❌
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Security model

• Framework for protocol analysis

• AKE model from [Bellare Rogaway 94, Li et al 2014] 

• Model lacks notion of concurrent correctness and 
synchronization

• Formalization of synchronization robustness – the ability to 
compute keys in future sessions if something goes wrong 
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Concurrent Correctness
BobAlice 

KAB
KAB

KM
KM

CTR = 0 CTR = 0

Initiate session 1: CTR = 1
CTR = 1

Accept?

CTR = 1, session completes,  
Bob accepts with CTR = 2

CTR = 1

CTR = 3
Initiate session 2: CTR = 3

Accept? 
CTR = 3, session completes,  
Bob accepts with CTR = 4

CTR = 3

Accept? 
Alice is at CTR = 3,   
Aborts session 1

Accept? 
Alice accepts with CTR = 4
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Synchronization Robustness

• Captures the ability of two parties succeeding in 
exchanging a session key in the future, no matter what has 
happened previously. 

• If the parties get out of sync, we need to be able to 
resynchronize.

• This definition formalizes this requirement and comes in a 
weak and a strong flavour.
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Weak Synchronization Robustness

• Definition: Any honestly executed, uninterrupted session 
will succeed no matter what has happened before. 
– Concurrent sessions were initiated
– Messages in previous sessions were dropped, reordered or altered 

(so that they were not accepted)
– Parties are arbitrarily many steps out of sync
– Either way: the next session Alice and Bob are allowed to execute 

without any interruption will succeed

• LP2: Allowing role reversal will make the protocol fail to 
meet this requirement
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Full Synchronization Robustness

• Definition: Any honestly executed session will succeed, no 
matter what else is going on with concurrent sessions or 
previous sessions. 
– Arbitrary many concurrent sessions are allowed

– The adversary may interleave messages with concurrent sessions 
arbitrarily

– The adversary may make any previous or concurrent sessions fail, 
but the one that is allowed to complete honestly will succeed

• Linearly evolving protocols fail this requirement
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Non-linear key evolution
• Need something different to achieve full synchronization robustness
• Use puncturable pseudorandom functions [Sahai Waters 2014]
• Definition: A PPRF is a PRF with an extra algorithm PUNCT(k, x) such 

that 
– Evaluating on a punctured value fails 
– Puncturing on an already punctured value returns the same key 
– Puncturing is commutative – the order in which you puncture values does not 

matter

• Session key is determined by evaluating on the session nonce
• All concurrent sessions can succeed: puncturing only affects key 

material of that particular session
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The non-linearly evolving protocols

Protocol Auth. # of
Messages

Sync. Rob.
Weak       Full

Conc. 
Corr.

Forward 
Security

PP1 R only 1

PP2 Mutual 2
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All our protocols 

Protocol Auth. # of
Messages

Sync. Rob.
Weak       Full

Conc. 
Corr.

Forward 
Security

SAKE [ACF20] Mutual 5 ❌ ❌ ❌

SAKE-AM [ACF20] Mutual 4 ❌ ❌ ❌

LP1 R only 1 ❌ ❌

LP2 Mutual 2 ❌ ❌

LP3 Mutual 3 ❌ ❌

PP1 R only 1

PP2 Mutual 2
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Concluding…

• Symmetric cryptography: it’s more relevant than you think

• Post-Quantum ≠ Key Exchange and Signatures

• We need to rethink our systems, not just our protocols

With regard to our work…

• Implementation efforts are underway

• No real world test data yet, but theoretical analysis promising

• Let me know if you want to get involved!
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More info?

Symmetric Key Exchange with Full Forward Security  

and Robust Synchronization 
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and Lise Millerjord 

IACR ePrint 2021 / 702 

@bordekock

bor.dekock@ntnu.no 
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