Post-Quantum

Cryptography Conference

Building Your PQC Lab: Trust But Verify Your PQC Ecosystem

Blair Canavan Director, Alliances at Thales

Building Your PQC ecosystem

Ensuring PQC-Agility Nov 8, 2023 Blair Canavan Director, Alliances, PQC Portfolio

A man calls quantum IT support and complains that his quantum computer isn't working.

Quantum IT support: "Have you tried turning it off and on at the same time?"

- Is there a problem here?Where do we start?
- Case study
- ➤ Take-aways
- ≻ Close

Is There a Problem Here?

cpl.thalesgroup.com

"Quantum computing risk cannot be ignored. Without cryptography, we essentially need to "unplug" from the ICT infrastructure and stop using untrusted parties and media. This is simply not practical for the majority of applications, including anything involving a financial transaction that uses real-time communication (credit card purchases, Money Transfers, online banking, etc) online communication (e-mail, texting, social media, etc) online advertising, e-health and so on."

Dr. Michele Mosca, Institute for Quantum Computing, University of Waterloo.

How a quantum computer impacts cryptography

CRYPTOGRAPHIC ALGORITHM TARGETED	ТҮРЕ	PURPOSE	IMPACT FROM LARGE SCALE QC
RSA	Public key	Signatures, Key establishment	No
Digital Signature Algorithm		Signatures,	longer
ECDSA (Elliptic Curve DSA)		Key exchange	secure

CRYPTOGRAPHIC ALGORITHM TARGETED	ТҮРЕ	PURPOSE	IMPACT FROM LARGE SCALE QC
AES	Symmetric key	Encryption	Longer keys needed
SHA-2, SHA-3		Hash functions	Larger output needed

Peter **SHOR**

Lov **Grover**

ΓΗΛLΕS

"According to Dr. Mosca's Theorem (X+Y)>Z, if the amount of time that data must remain secure (X) plus the time it takes to upgrade cryptographic systems (Y) is greater than when quantum computers come online with enough power to break cryptography (Z), you have already run out of time"

The NIST Standardization Process

Consortium

partners from France (University of Rennes 1, PQShield SAS), Switzerland (IBM), Canada (NCC Group), and the US (Brown U, Qualcomm).

Agence nationale de la sécurité des systèmes d'information

For ANSSI, PQC represents the most promising avenue to thwart the quantum threat.

- « ANSSI encourages all industries to initiate [..] a gradual overlap transition in order to progressively increase trust on the post-quantum algorithms and their implementations »
- « The quantum threat makes crypto agility particularly relevant », and
- « ANSSI will encourage the initiation of progress towards crypto agility as much as possible for future products. »

Source: https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantumcryptography-transition/

Threat Relevance

Bundesamt für Sicherheit in der Informationstechnik

Quantum-safe cryptography – fundamentals, current developments and recommendations

Date 2022.05.18

Source: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/ Brochure/quantum-safe-cryptography.html * «From BSI's point of view, the question of "if" or "when" there will be quantum computers is no longer in the foreground. Post-quantum cryptography will become the standard in the long term. »

Concerning further development [..] particular attention should be paid to making cryptographic mechanisms as flexible as possible in order to be able to react to [..] possibly replace algorithms in the future that no longer guarantee the desired level of security ("cryptographic agility"). »

National Cyber Security Centre

WHITEPAPER

Preparing for Quantum-Safe Cryptography

An NCSC whitepaper about mitigating the threat to cryptography from development in Quantum Computing.

- «There is likely to be a period during which organisations will be required to operate both conventional and quantum-safe cryptography, in order to ease transition between the two.»
- «The NCSC cautions against early adoption of non-standardised QSC. », and
- «There is unlikely to be a single quantum-safe algorithm suitable for all applications.. »

Threat Relevance

HAL

BRIEFING ROOM

National Security Memorandum on Promoting United States Leadership in Quantum Computing While Mitigating Risks to Vulnerable Cryptographic Systems

MAY 04, 2022 + STATEMENTS AND RELEASES

- « To mitigate this risk, the United States must prioritize the timely and equitable transition of cryptographic systems to quantum-resistant cryptography, with the goal of mitigating as much of the quantum risk as is feasible by 2035. »
- « Central to this migration effort will be an emphasis on cryptographic agility, both to reduce the time required to transition and to allow for seamless updates for future cryptographic standards. »

Source:

https://www.whitehouse.gov/briefing-room/statementsreleases/2022/05/04/national-security-memorandum-on-promoting-united-statesleadership-in-quantum-computing-while-mitigating-risks-to-vulnerablecryptographic-systems/

NSA CNSA 2.0 Recommendations

National Security Agency | Cybersecurity Advisory

Public-key CRYSTALS-Dilithium CRYSTALS-Kyber

Symmetric-key

Advanced Encryption Standard (AES) Secure Hash Algorithm (SHA)

Software and Firmware Updates Xtended Merkle Signature Scheme (XMSS) Leighton-Micali Signature (LMS)

- SW/FW signing begin transition immediately
- New SW/FW signed using new algorithms by 2025
- > Transition to be complete by 2035

CRYSTALS-KYBER	ML-KEM (FIPS-203)	
CRYSTALS-DILITHIUM	ML-DSA (FIPS-204)	
SPHINCS+	SLH-DSA (FIPS-205)	
FALCON	FN-DSA (PROPOSED NAME - RELEASED)	

Understanding implementation timelines by industry type

CNSA 2.0 Timeline

CNSA 2.0 added as an option and tested
 CNSA 2.0 as the default and preferred
 Exclusively use CNSA 2.0 by this year

Area of high risk: Confidential Communications

Where Do We Start?

cpl.thalesgroup.com

Planning is Essential: PQC Project Planning 101

- Stakeholders & Staffing
 - Exec Sponsorship
 - Current staff expertise
 - External SMEs
 - Seek knowledge
- Budget for success
- Project Management
- Current vs. Desired State
- Crypto Discovery
 - Crypto Assets, vulnerabilities, priority-base approach
- Ecosystem support from vendors & industry

Area of high risk: Use Cases Vary

A Collective Approach to Quantum Readiness

After all the work is done, important to remain crypto agile.

Mainly dealing with ecosystems that are standards dependent

- Today, time for PoCs, experimentation, announcements
 - QTLS, QPKI with Wells Fargo
- > Changing algorithms, protocols, key formats...
- Quantum Risk Assessment
 - Preparation and migration strategy, with priority management
 - Key material that needs to be protected for a long time (PKI root keys, Digital signature keys...)
 - Key material that lives in products with a long shelf-life or difficult to upgrade ((I)IoT, SE, MIM..)

Case Study: Wells Fargo

cpl.thalesgroup.com

Customer Challenge

WELLS FARGO	About Wells	Fargo, about their team
What problems we were faced with	Protecting customer and WFC proprietary data while minimizing disruption to the Enterprise	ng crypto- a foundation nitigation Developing the foundational layer of the PQC solution tech stack
IT challenges	Integrating quantum entropy into an inherently heterogeneous architecture	Developing a scalable, agile PQC approach to leverage Entropy as a Service for banking innovations and workflows
Other considerations	Operation Ubiquity for the entire financial ecosystem multi-part cooperat	nal costs, l expertise, Reputational risk – availability, of doing nothing or ty doing it ineffectually ion.

Customer Challenge – PQC Solution Stack

Key Take-Aways

cpl.thalesgroup.com

Building a future-proof Quantum strategy

Future-proof with crypto agility

Trust but Verify

Ecosystem support from vendors & industry

- Reasonable verification
- Vetted staff and technology
- Compare with external sources
- > Audit when available
- Assess, Review
- Communicate

Foundations of a Quantum-Safe solution

Key Generation

Provably Unpredictable Keys From Quantum Computers

Key Algorithms

NIST Post Quantum Algorithms

Key Management

Tamper-Proof Lifecycle Management

Taking a hybrid approach

> Governing bodies recommend:

A Hybrid approach utilizing crypto agile platforms for a smooth transition

Practice:

- Algorithms Support for alternate modes with classical algorithms and QRA
- RNGs Combine QRNGs with NIST certified RNGs

> Transition:

As Standards are approved, implement, and re-certify 3 phases proposed by ANSSI, towards full PQC:
✓ Phase #1: Preparation
✓ Phase #2: Hybridization
✓ Phase #3: Full PQC

Thank you

cpl.thalesgroup.com

Building Your PQC ecosystem

Ensuring PQC-Agility Nov 8, 2023 Blair Canavan Director, Alliances, PQC Portfolio

Cryptography Conference

PQ SHIELD

Fortanix [®]	KEŸFACTOR	🕅 NOREG
<u></u> 卿 QRL	THALES	d-trust.

amsterdam convention bureau ascettia

