
Cryptography Conference

Post-Quantum

Bas Westerbaan
Research Engineer at Cloudflare

Coping with Post-Quantum Signatures

in the WebPKI

Coping with
PQ Signatures in the WebPKI
Dr Bas Westerbaan, Cloudflare Research
PKI Consortium Post-Quantum Cryptography Conference, AMS, Nov 8th, 2023

This technical break-out
We start with a brief recap of the many signatures in the
WebPKI.
Then we take measure of the current (draft) offering of
post-quantum signature schemes and those being
considered in the on-ramp.
And as main course, we cover the three coping strategies:
● Leaving out intermediates
● KEMTLS: using key agreement as authentication
● Merkle Tree Certificates

There are many signatures on the Web
● Root on intermediate
● Intermediate on leaf
● Leaf on handshake
● Two SCTs for Certificate Transparency
● An OCSP staple

Typically 6 signatures
and 2 public keys
when visiting a website.

Not all signatures are equal
The TLS handshake signature is created on-the-fly (online) and
is transmitted together with its public key.
The handshake signature benefits from balanced
signing/verification time, and balanced public key/signature size.
The other signatures are offline, and can trade signing time for
better verification time. The intermediate’s signatures are sent
with their corresponding public key, and the rest (SCT/OCSP
staple) without public key.
The former benefits from balanced signature/public key size. For
the latter it’s beneficial to trade public key and signature sizes.

Sizes (bytes) CPU time (lower is better)

PQ Public key Signature Signing Verification

Standardised Ed25519 ❌ 32 64 1 (baseline) 1 (baseline)

RSA-2048 ❌ 256 256 70 0.3

Hash-based XMSS* w=256 h=20 n=16 ✅ 32 608 6 ⚠ 2

NIST drafts Dilithium2 ✅ 1,312 2,420 4.8 0.5

Falcon512 ✅ 897 666 8 ⚠ 0.5

SPHINCS+128s ✅ 32 7,856 8,000 2.8

SPHINCS+128f ✅ 32 17,088 550 7

Sample from
signatures
on-ramp

MAYO_one ✅ 1,168 321 11 1.3

MAYO_two ✅ 5,488 180 13 0.7

SQISign I ✅ 64 177 60,000 500

UOV Is-pkc ✅ 66,576 96 2.5 2

HAWK512 ✅ 1,024 555 2 1

Concrete instances with NIST drafts
Using Dilithium2 for everything adds 17kB.

Using Dilithium2 for handshake and Falcon512 for the rest, adds 8kB.
⚠ Fast and secure Falcon512 signing is hard to implement.

Using SPHINCS+-128 for everything adds 50kB. Order of magnitude
worse signing time than RSA. Most conservative choice.

Stateful hash-based signatures
Using XMSS(MT) with w=256, n=128, two subtrees for SCTs and
intermediates, and single tree for the rest, and Dilithium2 for
handshake signature, adds 8kB.

⚠ n=128 and w=256 instances are not standardised.

⚠ We lose non-repudiation.

⚠ Large precomputations/storage required for efficient signing.

⚠ Challenging to keep state.

Concrete instances with on-ramp candidates
Using MAYO one for leaf/intermediate, and two for the rest, adds
3.3kB. Signing time between ECC/RSA. ⚠ Security uncertain.

Using UOV Is-pkc for root and SCTs, and HAWK512 for the rest, adds
3.2kB. 66kB for stored UOV public keys. HAWK relies on Falcon
assumptions and then some more.

Using UOV ls-pkc again, but combined with Dilithium2. Adds 7.4kB.
Relatively conservative choice.

SQIsign only. Adds 0.5kB. Signing time >1s (not constant-time), and
verification time >35ms. 🐢

blog.cloudflare.com/sizing-up-post-quantum-signatures, 2021

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Leaving out intermediates
Most browsers ship intermediates, so why bother
sending them?

Leaving out intermediates

Three proposals:

● 2019, draft-kampanakis-tls-scas, send flag to indicate server
should only return leaf. Simple but error prone.

● 2022, draft-ietf-tls-cert-abridge, replaces intermediates with
identifiers from yearly updated central list from CCADB. Client
sends version of latest list. Also proposes tailored compression.

● 2023, draft-davidben-tls-trust-expr. Simplified: client sends which
trust store it uses, and the version it has. CA adds as metadata to
a certificate, in which trust store (version) it’s included. Trust
stores can then add intermediates as roots.

https://datatracker.ietf.org/doc/draft-kampanakis-tls-scas-latest/
https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/
https://datatracker.ietf.org/doc/draft-davidben-tls-trust-expr/

Gains leaving out intermediates: median 3kB

From Dennis Jackson’s draft-ietf-tls-cert-abridge-00

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/00/

KEMTLS (aka. Authkem)
Use KEM instead of signature for handshake
authentication.

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/

KEMTLS
Replacing Dilithium2 handshake signature with Kyber512 saves
2.9kB server → client, but adds 768B in the second flight client
→ server.
At the moment gains are modest. Interesting for embedded, to
reduce code size by eliminating primitive. Client authentication
with KEM requires extra roundtrip.
Large change to TLS. Subtle changes in security guarantees. We
have a formal analysis.
Proof-of-possession unclear. Could be done with lattice-based
zero-knowledge proofs or challenge-response.

https://eprint.iacr.org/2022/1111

Merkle Tree Certificates

Pain-points of current WebPKI

OCSP is expensive to run, whereas majority of users don’t use
it, but rely on CRL instead (via eg. CRLite).
Too many signatures.
Certificate Transparency is difficult to run.
Many sharp edges: path building, punycode, constraint
validation, etc.
(Domain control validation is imperfect — not addressed.)

Changing the WebPKI

With the post-quantum migration, the marginal cost of
changing the WebPKI is lower than ever.
There is a huge design space, with many trade offs.
Merkle Tree Certificates (MTC) is a concrete, ambitious, but
early draft. We’re looking for feedback on the design and
general direction.
Not a complete replacement for current WebPKI: it’s an
optimisation of the common case and falls back to X.509+CT.

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

Merkle Tree Certificates in short (1)

On a set time, eg. every hour, the CA publishes:
● The batch of assertions they certify. All assertions in a batch

are implicitly valid for the same window, eg. 14 days. For
each batch, the CA builds a Merkle tree on top.

● A signature on the roots of all currently valid batches.
Trust Services (eg. browser vendors) regularly pull the latest
batches and window signatures from CAs, verify them for
consistently, and only send the Merkle tree roots to the
browsers.

Merkle Tree Certificates in short (2)

A Merke tree certificate is an assertion together with a Merkle
authentication path to the root of the batch.
A server would install three certificates: two Merkle tree
certificates 7 days apart, and a fall back X509 certificate.
When connecting to a server, the client sends the sequence
number of the latest batches it knows of each MTC CA.
If the client is sufficiently up-to-date, the server can return one
of the Merkle tree certs, and otherwise will fall back to X.509.

Merkle Tree Certificates sizes

There are currently 6 billion unexpired certificates in CT.
If reissued every 7 days by one MTC CA, we’d have batches of
35 million assertions.
That amounts to authentication paths of 832 bytes, and with a
Dilithium2 public key a typical Merkle tree certificate will be well
below 2.5kB, smaller than only the median compressed
classical intermediate certificate of 3.2kB.

Wrapping up

We saw several different approaches to cope with large
post-quantum signatures, from simple to ambitious.
There are still many unknowns: among others, compliance
requirements; cryptanalytic breakthroughs; ecosystem
ossification; stakeholder constraints; etc.
Which approach to take? I’d say it’s good to have multiple pots
on the stove.

Thank you, questions?
And do please reach out if you want to collaborate on testing
these approaches.

Cryptography Conference

Post-Quantum

	Slide 39
	Slide 118

