Machine-checking post-quantum cryptography

Andreas Hülsing
Associate Professor at Eindhoven University of Technology
Machine-checking post-quantum cryptography

Andreas Hülsing
Applied & Provable Security Group
Eindhoven University of Technology
How do you ensure that a cryptographic scheme is hard to break?
Traditional Answer: Cryptanalysis

Have many smart people try to break it.

Does not scale!
• NIST: 64 candidates
• NIST signature on-ramp: 40 candidates
• KpqC: 16 candidates
• China, Russia, ...

Who is supposed to cryptanalyze all of these?
What about protocols?
The Role of Security Proofs in Cryptography

Scheme → Proof → Hard Problem

Cryptanalysis
The Role of Security Proofs in Cryptography

Scheme 6

Proof 6

Hard Problem

Cryptanalysis
The Role of Security Proofs in Cryptography
Beautiful idea, but who checks the proofs?

• The reviewers?
 • Review load per reviewer at top tier IACR: 16+ papers, 30 pages main body, often 50+ pages with appendix

• The community?
 • eprint 2023:
 • 1703 papers, of which 512 tagged protocols, 264 tagged PKC (ignoring foundations, applications,...)
 • 2919 IACR members in 2023
Does that work?

Bugs in proofs / proof is wrong.

• XMSS & SPHINCS+:
 • Kudinov, Kiktenko, and Fedorov 2020: Bug in proof of tight security bound for SPHINCS+.

• Dilithium (and many other schemes):
 • Flaw in the HVZK proof step for Fiat-Shamir with aborts.
 [Barbosa, Barthe, Doczkal, Don, Fehr, Grégoire, Huang, Hülsing, Lee, and Wu. Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium. CRYPTO 2023.]

All these are fixed now!

https://huelsing.net
Does that work?

Bugs in instantiation / proof does not apply:

• XMSS & SPHINCS+:
 • Peickert 2018: Tight-security proof does not apply to instantiations.
 • Antonov 2022: SHA256 instantiation of SPHINCS+ does not achieve full conjectured security on required security properties.

• Kyber:
 • FO-transform used by Kyber is not the one with a security proof
 • Kyber round 1: Proof does not apply when using key compression

• All these are fixed now!
Proof failure modes
(Taken from Peter Schwabe)

• Proof is wrong
 • Theorem is correct
 • Theorem is also wrong
 • Scheme is still (possibly) secure
 • Scheme is efficiently broken
• Proof doesn’t apply to the scheme
 • Proof correct, but theorem “insufficient”
 • Example: attack hides in non-tightness
• Proof (and possibly theorem) too vague
• Theorem and proof correct, but not very useful
 • “A is secure if A is secure”
How to solve this?
• Effort to formally verify crypto
• Goal: verified PQC ready for deployment
• Three main projects:
 • EasyCrypt proof assistant
 • Jasmin programming language
 • Libjade (PQ-)-crypto library
• Core community of \approx 30-40 people
• Discussion forum with >180 people
The toolchain

EasyCrypt

- EasyCrypt Spec
- EasyCrypt Model
- EasyCrypt Equivalence Proof
- EasyCrypt Security Proof

Jasmin

- Jasmin Compiler
- Jasmin Code
- assembly
- Certifed compilation
- Extracts
Results (Security proofs)

• Hülsing, Meijers, and Strub. Formal Verification of Saber’s Public-Key Encryption Scheme in EasyCrypt. CRYPTO 2022

• Barbosa, Barthe, Doczkal, Don, Fehr, Grégoire, Huang, Hülsing, Lee, and Wu. Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium. CRYPTO 2023

• Barbosa, Dupressoir, Grégoire, Hülsing, Meijers, and Strub. Machine-Checked Security for XMSS as in RFC 8391 and SPHINCS+. CRYPTO 2023
Impact

• Proof is wrong
 • Theorem is correct
 • Theorem is also wrong
 • Scheme is still (possibly) secure
 • Scheme is efficiently broken

• Proof doesn’t apply to the scheme
 • Proof correct, but theorem “insufficient”
 • Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful
 • “A is secure if A is secure”
Results

- Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet, Oliveira, Pacheco, Quaresma, Schwabe, Séré, Strub. Formally verifying Kyber Part I: Implementation Correctness. TCHES, 2023
Impact

- Proof is wrong
 - Theorem is correct
 - Theorem is also wrong
 - Scheme is still (possibly) secure
 - Scheme is efficiently broken
- Proof doesn’t apply to the scheme
 - Proof correct, but theorem “insufficient”
 - Example: attack hides in non-tightness
- Proof (and possibly theorem) too vague
- Theorem and proof correct, but not very useful
 - “A is secure if A is secure”
Impact

• Proof is wrong
 • Theorem is correct
 • Theorem is also wrong
 • Scheme is still (possibly) secure
 • Scheme is efficiently broken

• Proof doesn’t apply to the scheme
 • Proof correct, but theorem “insufficient”
 • Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful
 • “A is secure if A is secure”
What I did not talk about

• Implementation security (Jasmin part)
 • Side-Channel Attack Resistance
 • Speculative Execution Attack Mitigation
 • Memory Safety
 • ...
 • See CHES 2023 invited talk by Peter Schwabe
 https://youtu.be/7ulabAwB92M?si=gdGWEwXlz9XGZUhm&t=944

• Other tools
 https://eprint.iacr.org/2019/1393
Why does NIST not require machine-checked proofs for the signature round?

Results are great but

• Full workflow for Kyber took more than 3 years of many, many people! (Still not fully published!)
• Tools are "Expert Tools"
• New proofs often need help of tool developer
• Little automation
• Little integration with higher level tools (e.g., for protocols)
Summary

• We have the tools, we can achieve great results
• Verifying proofs is still research
• Usability still needs improvement
• There are many different tools for different use-cases

• We are working on a fully verified PQC library!
• Join the Formosa project (https://formosa-crypto.org/)