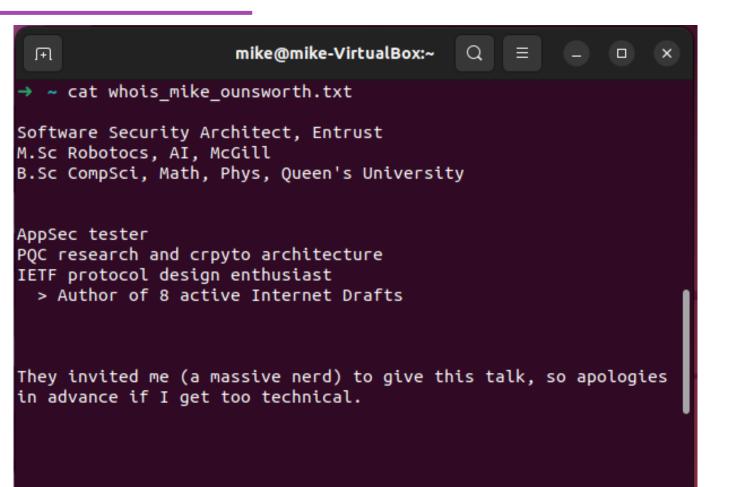
PQC AT THE IETF

Mike Ounsworth

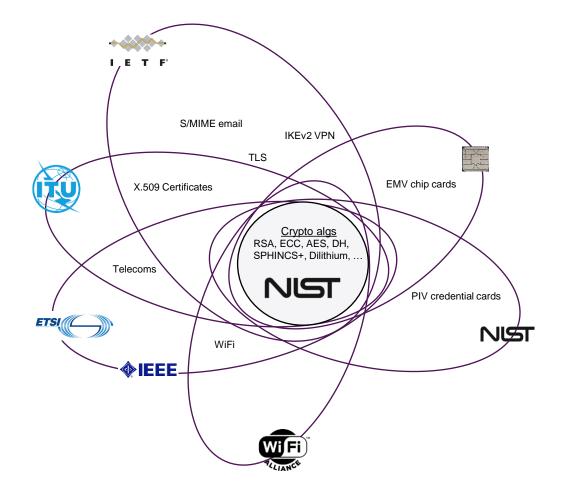
PKI Consortium -- PQC Conference

3 March, 2023

TALK OUTLINE

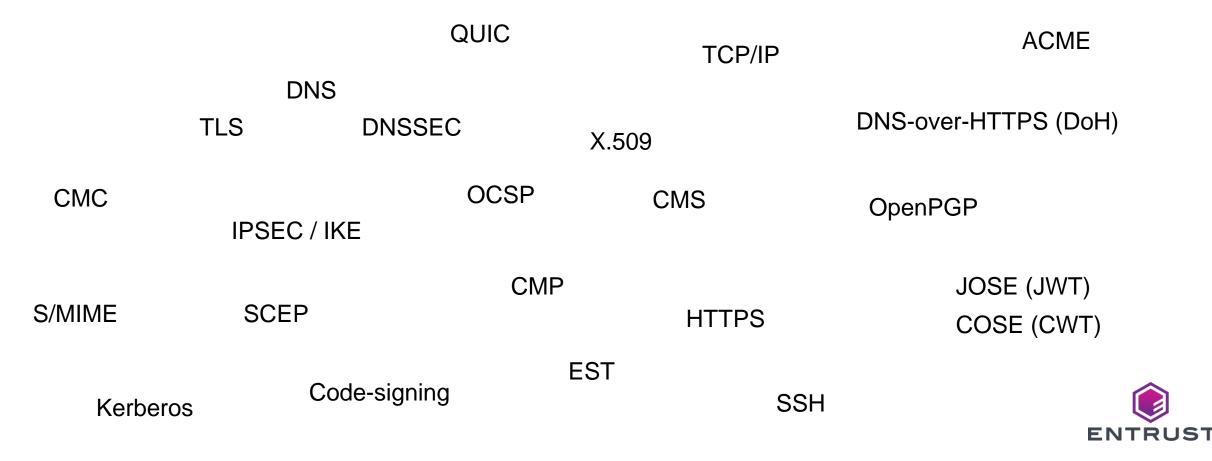

- \$ whois mike_ounsworth
- > Problem Statement: PQC work at the IETF
- > Problem Statement: Why this work is so (a) 'ing hard
 - Timely and graceful migration is hard
 - Unclear and fractured regulatory requirements
 - Challenges: HBS "at scale"
 - KEMs "don't fit"
- Case studies of PQC integration into IETF protocols
 - OpenPGP, X.509, TLS, CMS, CMP
- > Hybrid and Composite PKI migration strategies

SPEAKER BIO: MIKE OUNSWORTH

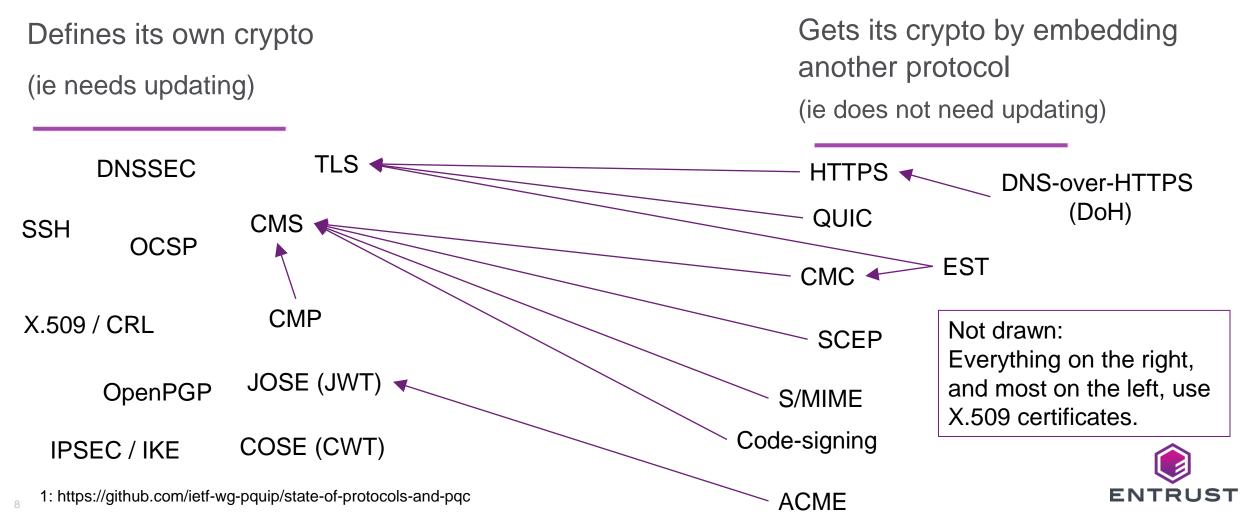


PROBLEM STATEMENT: PQC WORK AT THE IETF

FRAGMENTED COMMUNITY


- NIST is standardizing PQ crypto primitives.
- Updating protocols that rely on crypto falls to each respective standards body.
- As participating members of the IETF, we can speak to action there.

PROBLEM STATEMENT: SCOPE OF PQC WORK AT THE IETF



The IETF owns the specs for many of the Internet's cryptographic and security protocols.

IETF CRYPTOGRAPHIC DEPENDENCIES (NOT EXHAUSTIVE)

Good news: not everything needs to be touched.

ACTIVE PQC WORK AT IETF

- General approach: "<u>Hurry up and wait</u>": get drafts started, then pause them until final FIPS specs for Dilithium / Falcon / SPHINCS+, Kyber.
- LAMPS WG
 - X.509, CMP, CMS
- > IPSECME WG
 - IKEv2
- > TLS WG:
 - PQ KEMs, PQ certificates
- JOSE (JWT) and COSE (CWT)OpenPGP

PQUIP

- A new WG specifically to coordinate PQ work across the IETF.
- Protocols that need updating, but have no active WG:
 - SSH, Kerberos
- (other SEC area WGs excluded for brevity²)

^{1: &}lt;u>https://trac.ietf.org/trac/sec/wiki/PQCAgility</u>

IETF PQ X.509 HACKATHON

- Started at IETF 115 (Nov 2022), monthly meetings since, continuing at IETF 116 (Mar 2023).
- Growing repo of test artifacts¹
 - Samples of X.509 certs, CSRs, CRLs, and starting to do CMS objects.
 - Across all PQC signature algorithms, and hybrids.
 - Across 4 open source & 5 proprietary PKI implementations.
 - So far, no (major) interop problems

IETF PQC WORK THAT ENTRUST IS CONTRIBUTING TO

> LAMPS WG

- CMS: draft-ietf-lamps-cms-kemri adding KEMs
- CMP: draft-ietf-lamps-rfc4210bis aka "CMPv3"
- CMS: draft-ietf-lamps-cms-kyber
- X.509 / CMS: draft-ounsworth-pq-composite-sigs
- X.509 / CMS: draft-ounsworth-pq-composite-kem
- Cryptographic Research Forum (CFRG)
 - draft-fluhrer-cfrg-ntru-00
 - draft-ounsworth-cfrg-kem-combiners
- > OpenPGP WG
 - draft-wussler-openpgp-pqc-00
- > Active participants in the PQUIP WG

PROBLEM STATEMENT: WHY THIS WORK IS SO (2)'ING HARD

CHALLENGES: TIMELY AND GRACEFUL MIGRATION IS HARD

"KNOBS AND DIALS"

- We had enough trouble migrating from RSA to ECDSA, or from RSA-SHA1 to RSA-SHA2.
- > Way more "dials and knobs":
 - Alg & param selection: Pub key size vs Priv key size vs keygen / sign time vs exhaustion limit.
 - PQ/T Hybrid, or pure PQ?
 - Mixed PKIs?
 - New algs to implement; "build, buy, or open source?"
- Navigating these tradeoffs will require expert knowledge of both the PQ primitives, and your PKI's needs.

CHALLENGES: HYBRIDS FOR SECURITY AND EASE OF MIGRATION?

- A "Post-Quantum / Traditional (PQ/T) Hybrid" is one of several techniques that use both cryptosystems together.
- Reasons you may want to explore hybrid solutions:
 - Security: protection against new attacks; hybrid buys you time to mitigate.
 - <u>Migration and Backwards Compatibility</u>: hybrid solutions allow complex environments to migrate more gracefully and avoid a hard "flag day".
- Regulatory fracturing:
 - Hybrids required: BSI (Germany), ANSSI (France)
 - Hybrids allowed: ENISA (EU), ETSI
 - Hybrids discouraged: NSA (US), NCSC (UK), CSE (Canada)

CHALLENGES: UNCLEAR AND FRACTURED REGULATORY REQUIREMENTS

CNS	A 2.0 Timeline		Software and Firmware Updates Xtended Merkle Signature Scheme (XMSS) Leighton-Micali Signature (LMS)
2022_2	023–2024–2025–2026–2027–20	28–2029 2030 2031–2	032-2033
Software/firmware signing			
Web browsers/servers and cloud services	STATE STATE		

- Does "Software/firmware signing" specifically apply to chipset ROM and secure boot?
- Does that include the publicly-trusted Windows code-signing PKI?
 - Does an LMS PKI imply LMS OCSP responders and LMS TSAs? Those are much tricker than LMS CAs due to scale (more on this later).
- > 2025 is basically tomorrow, are vendors ready? This implicates HSM vendor up to web server and browser vendors.
 - Chicken-and-egg: browser and webservers are waiting for IETF protocol specs, which are waiting for NIST Dilithium / Falcon / Kyber specs.

1: "Announcing the Commercial National Security Algorithm Suite 2.0", National Security Agency

CHALLENGES: HBS "AT SCALE" ISSUE: KEY EXHAUSTION

Hash-based signature (HBS) schemes, including LMS, HSS, XMSS, and SPHINCS+ all have limited-use private keys.

ParmSet	KeyGenTime	SigSize	KeyLifetime
15	6 sec	1616 bytes	30,000 sigs
15/15	6 sec	3332 bytes	1.0 billion sigs
25/15	1.5 hour	3652 bytes	1.0 trillion sigs

This seems like a lot, but have you ever thought about how many signatures your CA, OCSP Responder, or Timestamping Authority use per year? It could be billions / year for an active CA.

CHALLENGES: HBS "AT SCALE" ISSUE: KEY EXHAUSTION

> We now need to think about keys as <u>% of expiry</u> and <u>% of exhaustion</u>.

- This is a new paradigm (except for FIPS 140 PIV cards)
- > PKCS#11 v3.1 has added¹:
 - An application can ask an HSM: how many signatures are left on this key?

CKA_HSS_KEYS_REMAINING

• An HSM can refuse to produce any more signatures with a given key.

CKR_KEY_EXHAUSTED

> What about Denial-of-Service (DoS)?

1: "PKCS #11 Specification Version 3.1 – OASIS"

CHALLENGES: HBS "AT SCALE" ISSUE: OPERATIONAL CONCERNS

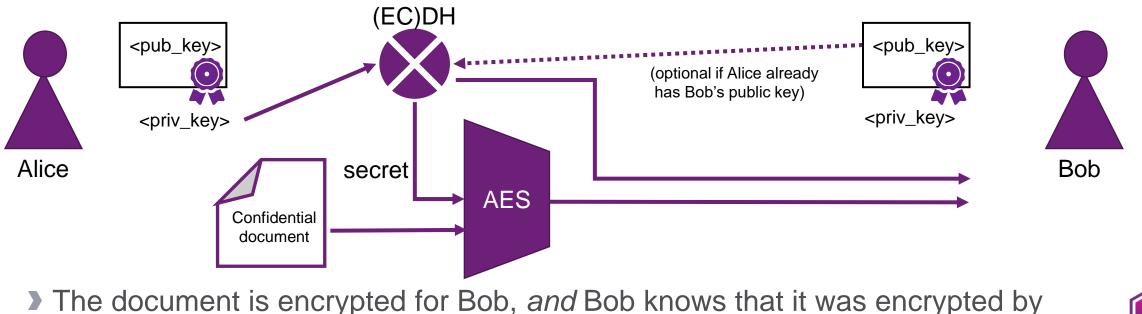
- Choosing lifetime number of signatures an keygen and balancing that against bandwidth.
- > Private keys require very large storage: 100's of gbs.
 - Is this even feasible on, for example, a smartcard? Those typically have 80 140 kb of storage. Need guidance from smartcard manufacturers.
- **>** SP 800-208:

"due to the risks associated with copying OTS keys [and state re-use], this recommendation prohibits exporting private keying material"

"create a single stateful HBS key in which the OTS private keys are distributed across multiple cryptographic modules."

• This is a fundamental shift in HSM management, and needs firmware support for treesplitting.

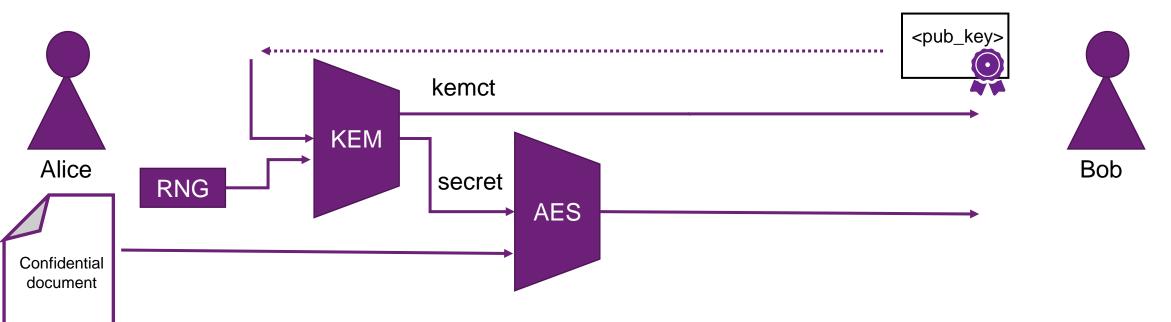
(CRYPTO NERD TIME)


(PAUSE FOR BREATH)

CHALLENGES: KEMS "DON'T FIT" (EC)DH TODAY – AUTHENTICATED KEY EXCHANGE

Today, you can fire off (EC)DH ciphertext <u>and</u> your encrypted content all in the opening message. It's both <u>encrypted</u> and <u>authenticated</u>.

> "0.5 RTT AKE"


21

CHALLENGES: KEMS "DON'T FIT": KEY ENCAPSULATION MECHANISM (KEM)

> Unfortunately, the NIST PQC encryption primitives are all in the shape of a "KEM".

This is different from RSA KeyTransport where Alice gets to choose the AES key.

- > And different from (EC)DH KeyAgreement where both parties contribute a public key.
 - IMPORTANTLY: to get an AKE, you need to do 2 KEM exchanges: one in each direction.

CHALLENGES: KEMS "DON'T FIT": KEM-BASED AUTHENTICATED KEY EXCHANGE (AKE)

- Getting an *authenticated* key exchange with KEMs requires 1 full round-trip (1 RTT) *before* you can encrypt anything – so 1.5 RTT for the first encrypted message.
 - ... and 3 calls of the KEM.Encaps() primitive.

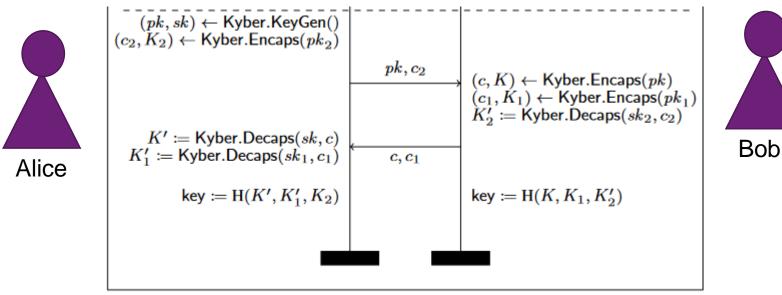


Figure 3. Kyber.AKE - Authenticated key exchange protocol using Kyber,

CASE STUDIES OF PQC INTEGRATION INTO IETF PROTOCOLS:

X.509, OPENPGP, TLS, CMS, CMP

CASE STUDY: PQC IN OPENPGP AND X.509

In Araft-wussler-openpgp-pqc-00 (co-authored by BSI) only supports lattice schemes in PQ/T Hybrids:

Signatures	(8)
------------	-----

Dilithium3 + Ed25519 Dilithium5 + Ed448 Dilithium3 + ECDSA-NIST-P-256 Dilithium5 + ECDSA-NIST-P-384 Dilithium3 + ECDSA-brainpoolP256r1 Dilithium5 + ECDSA-brainpoolP384r1 SPHINCS+-simple-SHA2 SPHINCS+-simple-SHAKE KEMs (6)

Kyber768 + X25519 Kyber1024 + X448 Kyber768 + ECDH-NIST-P-256 Kyber1024 + ECDH-NIST-P-384 Kyber768 + ECDH-brainpoolP256r1 Kyber1024 + ECDH-brainpoolP384r1

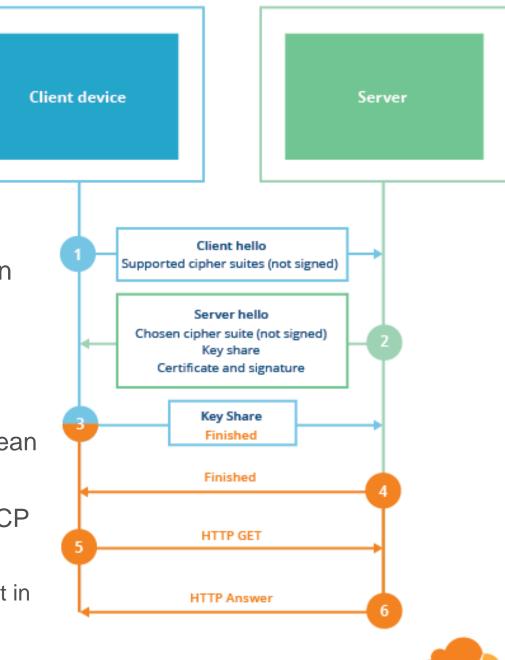
> draft-ounsworth-pq-composite-keys-03

Similar list for X.509, but X.509 has a more diverse set of usecases than PGP, ... so lots more debate in the working group, which will result in a longer list. Currently: 14 signatures + 12 KEMs hybrids + all the pure PQC algs.

CASE STUDY: PQC IN TLS -- ENCRYPTION

> draft-ietf-tls-hybrid-design-06 is fairly mature, and taking a PQ/T Hybrid approach:

/* Hybrid Key Exchange Methods */
x25519_kyber768(TBD), secp384r1_kyber768(TBD),
x25519 kyber512(TBD), secp256r1 kyber512(TBD), ...,


Do a traditional ECDH and a PQ and combine them together to form the session master secret.

Easy.

CASE STUDY: PQC IN TLS – SIGNATURES / CERTS

- > No drafts yet, or even rough consensus on how to do it.
- Problem: Step 2 is limited to ~ 5 kb by the TCP Congestion Window. So PQ certs won't fit.
- > Possible solutions:
 - 1. Be ok with packet fragmentation in step 2.
 - Only allow *extremely* small lattice schemes would mean very short server cert lifetimes (like < 1 month).
 - 3. Move the certificate to step 5 where you have larger TCP packets.
 - Possibly as a PQ/T Hybrid: trad. cert in step 2, and PQ cert in step 4.

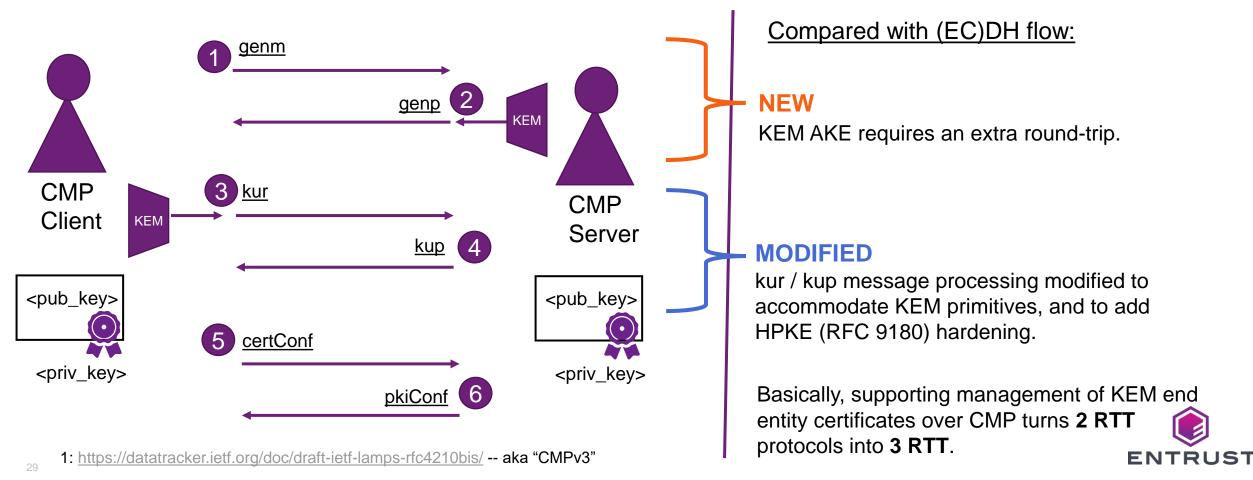
CLOUD

27

CASE STUDY: PQC IN CMS

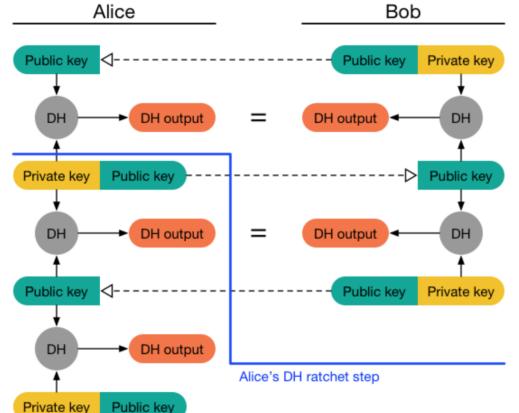
- Cryptographic Message Syntax is the PKI-based encryption and signature layer used by S/MIME, PDF signing, Windows Code-signing, and more.
- > New PQC signature algs will drop in (almost) for free.
- > draft-ietf-lamps-cms-kemri-00
 defines a new message type
 KEMRecipientInfo.
- > KEM-protected messages will use this with their EnvelopedData, otherwise nothing changes.

```
KEMRecipientInfo ::= SEQUENCE {
  version CMSVersion, -- always set to 0
  rid RecipientIdentifier,
  kem KEMAlgorithmIdentifier,
  kemct OCTET STRING,
  kdf KeyDerivationAlgorithmIdentifier,
  kekLength INTEGER (1..MAX),
  ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL,
  wrap KeyEncryptionAlgorithmIdentifier,
  encryptedKey EncryptedKey }
```

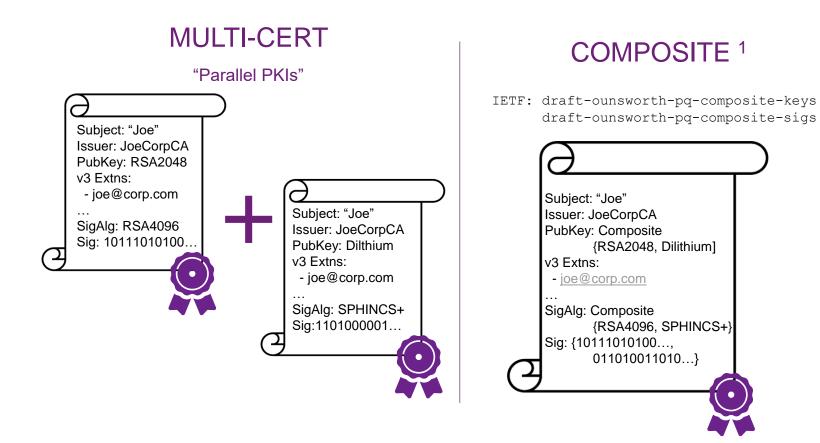


Easy.

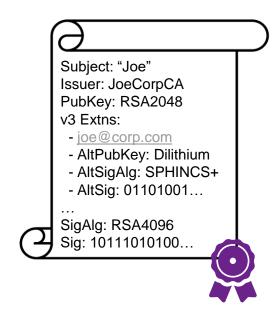
CASE STUDY: PQC IN CMP – EXAMPLE: KEY UPDATE (KUR)


Certificate Management Protocol (CMP) is one of the original automated certificate enrollment protocols.

BONUS: FITTING KEMS INTO SIGNAL PROTOCOL


- Signal Protocol's Double Ratchet is a beautiful application of the property that (EC)DH is a 0.5 RTT AKE.

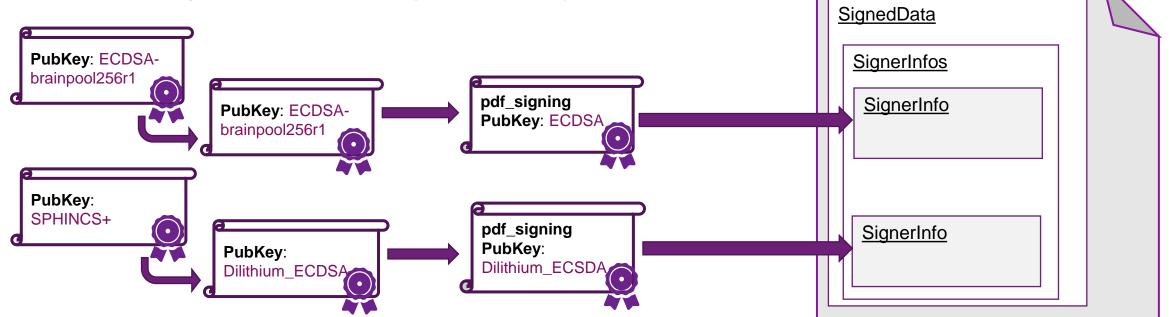
 Alice
 Bob
- Many smart people are working on making KEM versions of the Double Ratchet.
- While it is of course possible, it won't be nearly as elegant and beautiful :'(



HYBRID APPROACHES FOR MIGRATING PKI

"HYBRID" CATALYST^{™ 2}

ITU-T: X.509 (10/2019)



¹ Entrust – CableLabs -- D-Trust – Cisco collaboration; IETF draft
² ISARA - Entrust - Cisco collaboration; IETF and ISO drafts
> https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.509

CASE STUDY: HYBRID PKIS

Example of applying hybrid PKIs to Cryptographic Message Syntax (CMS)

- Backwards compatibility: CMS clients (code-signing, PDF, S/MIME) already handle multiple SignerInfos today.
 - So legacy clients *should* gracefully skip the PQ signature.
- > Redundancy gives migration flexibility. PQ-aware clients can validate either:
 - PQ signature only, or
 - Both parallel signatures independently.

- This crypto migration will be the hardest we've ever done, full of *"square peg, round hole"* problems in all areas:
 - Protocol and application design.
 - Regulatory requirements and timelines.
 - Operational procedures.

- ... to be continued. Keep watching:
 - The NIST PQC "competition", and NCCoE PQC Migration Project.
 - Updates from regulatory bodies NSA, ENISA BSI, ANSSI, ETSI
 - IETF Working Group discussions

