

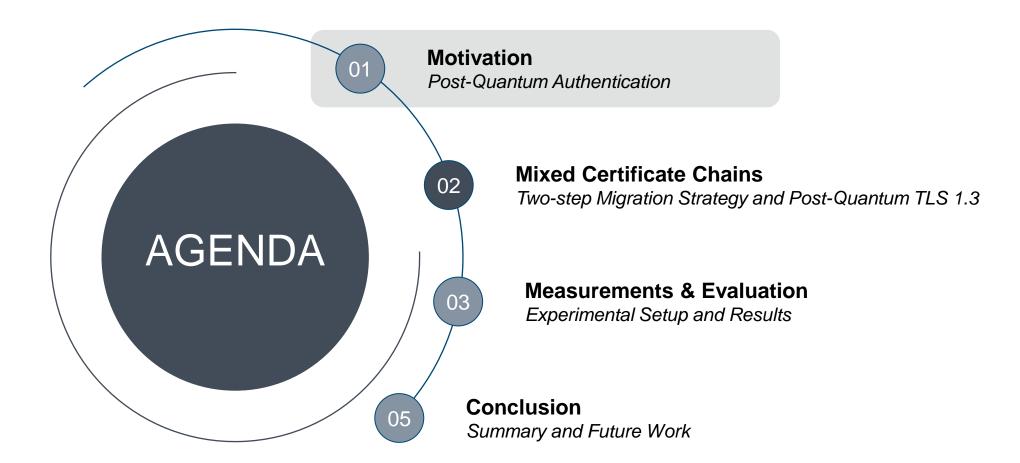
Mixed Certificate Chains for Post-Quantum Authentication*

Sebastian Paul (Bosch Research)

Post-Quantum Cryptography Conference March 3, 2023 – Ottawa, Canada

Full paper: S. Paul, Y. Kuzovkova, N. Lahr, and R. Niederhagen. 2022. *Mixed Certificate Chains for the Transition to Post-Quantum Authentication in TLS 1.3.* ASIA CCS '22. DOI: 10.1145/3488932.3497755.

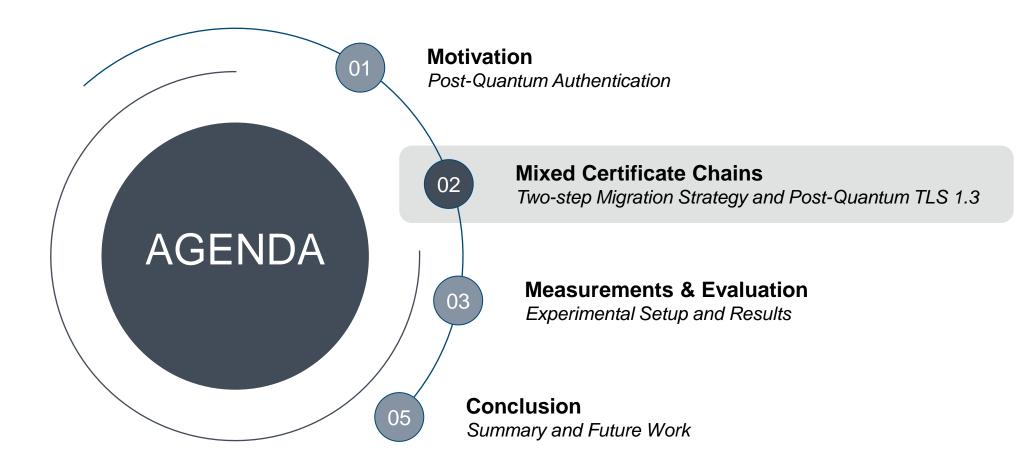
Mixed Certificate Chains for Post-Quantum Authentication About Me



Sebastian Paul

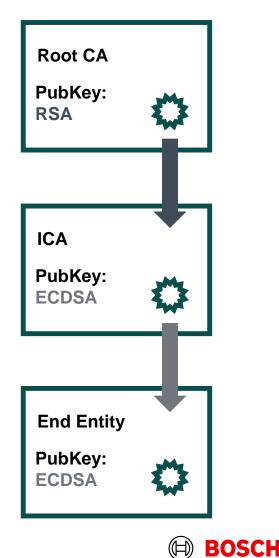
- Security Research Engineer at Bosch with focus on Industrial IoT and PQC
- Bosch project lead for BMBF-funded project Full Lifecycle Post-Quantum PKI FLOQI
- PhD from Technical University Darmstadt in Applied Post-Quantum Cryptography Thesis: "On the Transition to Post-Quantum Cryptography in the Industrial Internet of Things"
- MSc in Electrical Engineering from Karlsruhe Institute of Technology (KIT)

Mixed Certificate Chains for Post-Quantum Authentication

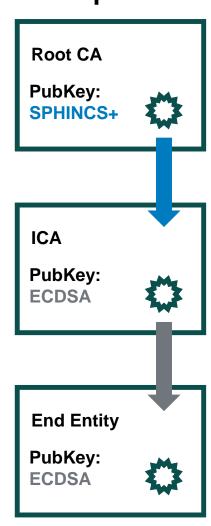

Mixed Certificate Chains for Post-Quantum Authentication Why Worry About Post-Quantum Authentication Now?

- Existing migration strategies focus on confidentiality:
 - Confidentiality can be broken retroactively \rightarrow "Store now, decrypt later" attacks
 - Hybrid key exchange → Combine conventional key agreement with a post-quantum key encapsulation mechanism
- Migration to post-quantum authentication needs to be completed before large-scale quantum computers exist:
 - Authentication typically based on certificates and public-key infrastructures
 - Complex and time-consuming migration process

→ Our goal: Propose and investigate a migration strategy towards post-quantum authentication


Mixed Certificate Chains for Post-Quantum Authentication

Mixed Certificate Chains for Post-Quantum Authentication Two-Step Migration Strategy


- Combine different signature algorithms within the same certificate chain
 - → Mixed certificate chains

6/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03

Mixed Certificate Chains for Post-Quantum Authentication Two-Step Migration Strategy

- Combine different signature algorithms within the same certificate chain
 Mixed certificate chains
- Combine well-studied and trusted hash-based signature schemes (SPHINCS+ or XMSS) at Root CA, with:
 - (1) Conventional ECC (ECDSA) at ICA and End-Entity

Step One

7/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03 © Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

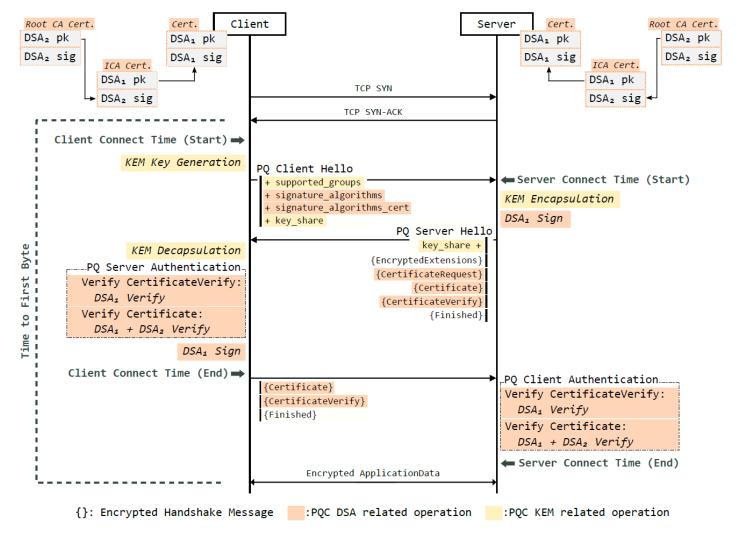
Mixed Certificate Chains for Post-Quantum Authentication **Two-Step Migration Strategy**

- Combine different signature algorithms within the same certificate chain \rightarrow Mixed certificate chains
- Combine well-studied and trusted hash-based signature schemes (SPHINCS+ or XMSS) at **Root CA**, with:
 - (1) Conventional ECC (ECDSA) at **ICA** and **End-Entity**
 - Fast but newer *lattice-based schemes* (*Dilithium or Falcon*) at **ICA** and **End-Entity** (2)
- Goals:

8/20

- Seamless protection against quantum adversaries (1)
- Small certificates at End Entity Level (2)
- Feasible connection establishment time with little overhead because of (3) additional signature schemes

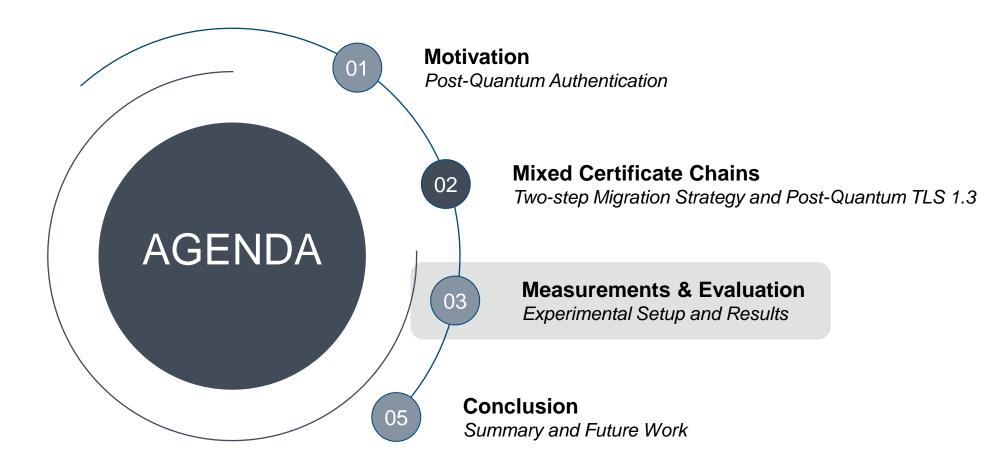
Step Two Root CA **PubKey:** SPHINCS₁ **ICA PubKev:** Dilithium **End Entity PubKey:** Dilithium


Mixed Certificate Chains for Post-Quantum Authentication Evaluated Scheme Combinations

		S				
		Root CA	Interm. CA	End Entity	KEX	<i>Notation</i> ⁴
		ECDSA	ECDSA	ECDSA	ECDHE	EDS-EDH
	1	Dilithium	Dilithium	Dilithium	Kyber	Dil-Kyb
Control: DSA _{Root&ICA&EE} - KEX	ontrol	Falcon	Falcon	Falcon	Kyber	Fal-Kyb
CONTINUE DOMRoot&ICA&EE	on	XMSS	XMSS	XMSS	Kyber	XMS-Kyb
	C	SPHINCS ⁺ -f	SPHINCS ⁺ -f	SPHINCS ⁺ -f	Kyber	SPf-Kyb
		SPHINCS ⁺ -s	SPHINCS ⁺ -s	SPHINCS ⁺ -s	Kyber	SPs-Kyb
	r	XMSS	ECDSA	ECDSA	Kyber	XMS+EDS-Kyb
Mixed Certificate Chain: XMS + DSA _{ICA&EE}	Chain	XMSS	Dilithium	Dilithium	Kyber	XMS+Dil-Kyb
		XMSS	Falcon	Falcon	Kyber	XMS+Fal-Kyb
	cate	SPHINCS ⁺ -f	ECDSA	ECDSA	Kyber	SPf+EDS-Kyb
Mixed Certificate Chain: SPf + DSA _{ICA&EE}	tifi	SPHINCS ⁺ -f	Dilithium	Dilithium	Kyber	SPf+Dil-Kyb
SPf: speed-optimized SPHINCS ⁺	Certificate	SPHINCS ⁺ -f	Falcon	Falcon	Kyber	SPf+Fal-Kyb
		SPHINCS ⁺ -s	ECDSA	ECDSA	Kyber	SPs+EDS-Kyb
Mixed Certificate Chain: SPs + DSA _{ICA&EE}	Mixed	SPHINCS ⁺ -s	Dilithium	Dilithium	Kyber	SPs+Dil-Kyb
SPs: size-optimized SPHINCS ⁺	N	SPHINCS ⁺ -s	Falcon	Falcon	Kyber	SPs+Fal-Kyb

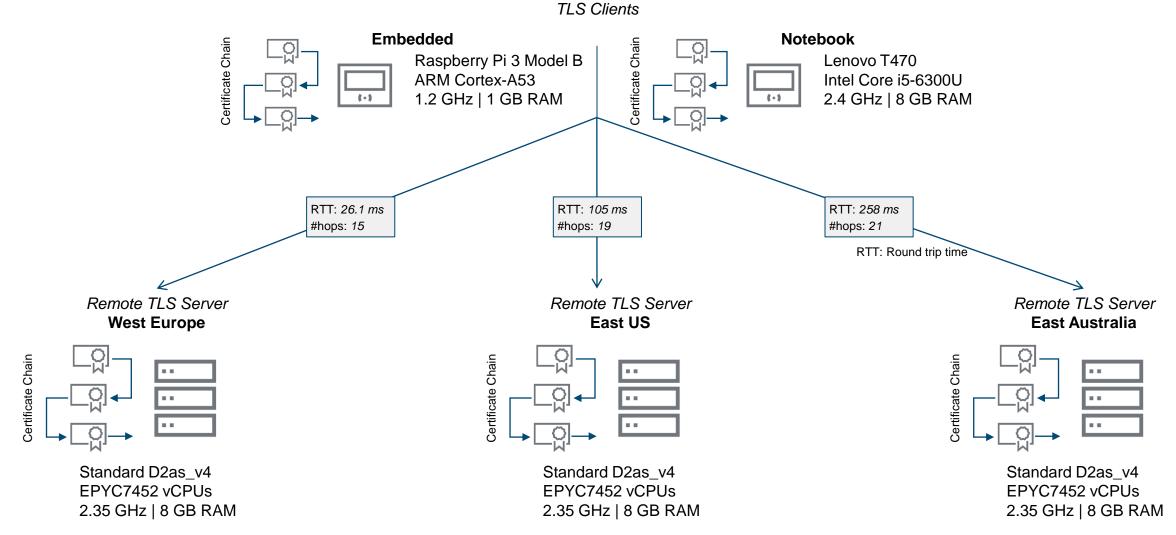
9/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03

Mixed Certificate Chains for Post-Quantum Authentication Post-Quantum TLS 1.3


Setup:

- Integration of PQC reference implementations into wolfSSL publicly available: https://github.com/boschresearch/pg-wolfSSL
- **Mutually authenticated TLS 1.3 handshake** using the full 1-RTT mode without pre-shared key-resumption.
- Selected cipher suite is TLS_AES_256_GCM_SHA384
- Certificate chain length of 3: Root ICA End Entity
- · Select Kyber as efficient post-quantum KEM
- KEM-operations:
 - Client: 1x Key Generation + 1x Decapsulation
 - Server: 1x Encapsulation
- DSA-operations:
 - Client: 3x Verify + 1x Sign
 - Server: 3x Verify + 1x Sign
- Measurements:
 - Time to First Byte (TTFB)
 - Client Connect Time
 - Server Connect Time

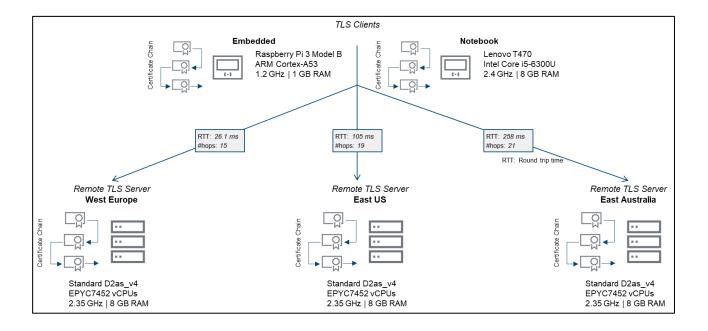
10/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03



Mixed Certificate Chains for Post-Quantum Authentication

Mixed Certificate Chains for Post-Quantum Authentication Experimental Setup

12/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03


© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

Mixed Certificate Chains for Post-Quantum Authentication Performance Study

Measurements*

- 1) Performance benchmark of cryptographic primitives on all device types (Raspberry Pi3, Notebook, Azure VM)
- 2) TLS connection establishment times
- 3) Certificate and communication size
- 4) Peak memory usage (stack & heap)

* Check out full paper for details: <u>10.1145/3488932.3497755</u>

13/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03

Mixed Certificate Chains for Post-Quantum Authentication Benchmark of Evaluated Signature Schemes

	Algorithm (Parameter)	NIST Level		zes yte)	5		ormance (ms)	
						Embed.	Notebook	Server
				Signat	ure Sche	mes		
	ECDSA		sk:	32	gen:	1.52	0.0920	0.0910
onventional Cryptography	(SECP256R1)	×	pk:	65	sign:	1.94	0.116	0.119
	(SECF250K1)		sig:	73	vfy:	4.85	0.285	0.301
Letting Deced DOC	Dilithium [7]		sk:	2544	gen:	2.04	0.107	0.0880
	Dilithium [7] (Dilithium-2)	2	pk:	1312	sign:	11.9	0.414	0.389
			sig:	2420	vfy:	2.21	0.121	0.0990
Lattice-Based PQC	Falcon [26] (Falcon-512)		sk:	1281	gen:	158	20.1	16.9
		1	pk:	897	sign:	35.7	5.90	4.91
			sig:	666	vfy:	0.435	0.0420	0.0310
	SPHINCS ⁺ [5]		sk:	64	gen:	473	114	93.6
	(SHA-256-128s	1	pk:	32	sign:	3540	866	710
	-simple)		sig:	7856	vfy:	3.53	0.876	0.678
	SPHINCS ⁺ [5]		sk:	64	gen:	7.33	1.75	1.47
Hash-Based PQC	(SHA-256-128f	1	pk:_	32	sign:	183	43.3	36.4
	-simple)		sig:	17,088	vfy:	10.2	2.46	2.05
	XMSS [30]	_	sk:	36	gen: 1	11,300	2190	1870
	(XMSS-SHA2	_9	pk:	64	sign:	50.1	9.70	8.26
	-10-256)		sig:	2500	vfy:	6.49	1.20	1.03

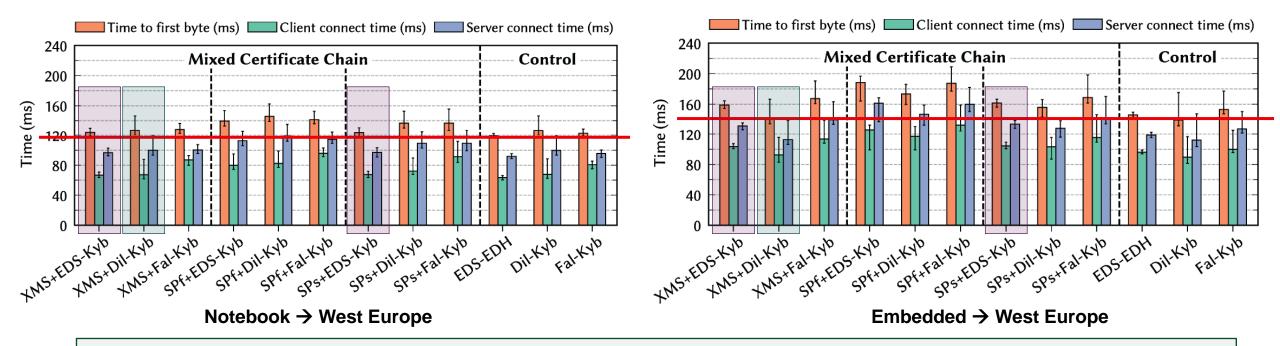
Results

- Key sizes:
 - Lattice-based schemes: Very balanced profile, nevertheless larger keys/sigs than ECDSA
 - Hash-based schemes: Very large signatures, but small public and private keys

• Performance:

- Signing operation very expensive in hashbased signature schemes → up to 3.5 s
- Verification operation feasible in all PQC schemes → Dilithium and Falcon even faster than ECDSA

Notation:


secret key (sk), public key (pk), signature (sig) key generation (gen), sign (sign), verify (vfy)

14/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03

С

Mixed Certificate Chains for Post-Quantum Authentication Connection Establishment Times: West Europe

Results

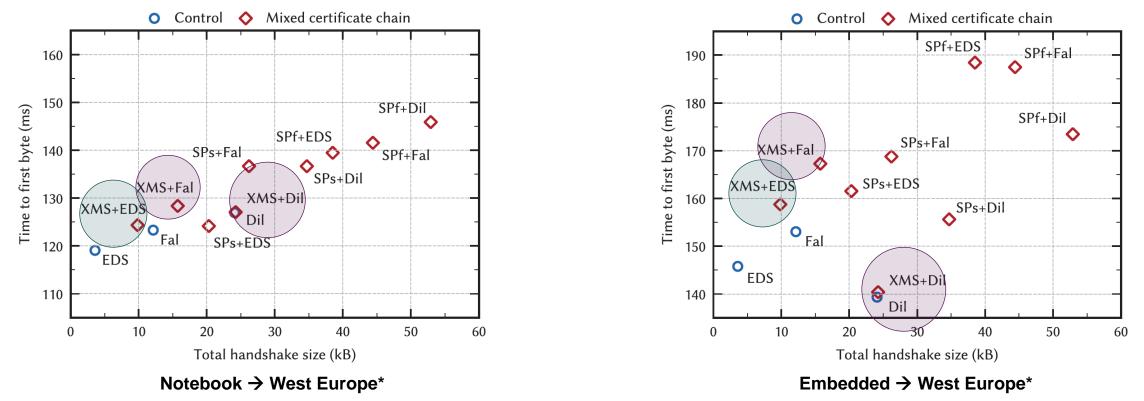
- Feasible increase in median TTFB across all nine evaluated mixed certificate chains compared to ECC-based control handshake (EDS-EDH).
- For connections to the server in West Europe, this increase is +12.4% (Notebook) and +14.4% (Embedded)
- As expected, the increase becomes less significant when connecting to server located at greater distances
- Intermediate migration step: The combinations SPs+EDS-Kyb and XMS+EDS-Kyb seem promising transitional candidates
- Final migration step: the combination XMS+Dil-Kyb shows the fastest TTFB

15/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03

Mixed Certificate Chains for Post-Quantum Authentication Certificate Sizes

		Се	rtificate Si	ze (kB)	Chain Size	Δ
Mixed Certificate Chain	Group	Root CA	ICA	End-Entity	(excl. root; kB)	(%)
EDS-EDH		0.775	0.803	0.764	1.57	_
Dil-Kyb		5.59	5.62	5.58	11.2	+615
Fal-Kyb	control	2.71	2.74	2.69	5.43	+246
XMS-Kyb	control	4.04	4.07	4.03	8.10	+417
SPf-Kyb		23.3	23.3	23.3	46.6	+2870
SPs-Kyb		11.1	11.1	11.1	22.2	+1320
XMS+EDS-Kyb		4.04	4.09	0.760	4.85	+209
XMS+Dil-Kyb	mixed	4.04	5.72	5.58	11.3	+621
XMS+Fal-Kyb		4.04	5.17	2.68	7.87	+402
SPf+EDS-Kyb		23.3	23.4	0.764	24.1	+1440
SPf+Dil-Kyb	mixed	23.3	25.0	5.58	30.6	+1850
SPf+Fal-Kyb		23.3	24.5	2.70	27.2	+1630
SPs+EDS-Kyb		11.1	11.2	0.760	11.9	+662
SPs+Dil-Kyb	mixed	11.1	12.8	5.58	18.4	+1070
SPs+Fal-Kyb		11.1	12.3	2.70	15.0	+855

Certificate sizes of evaluated scheme combinations (reported in kB; rounded to three significant figures)


Results

- Size of certificates and cert. chains increase significantly
- Intermediate migration step: Combination of XMSS and ECDSA shows smallest increase (+ 3.01 kB)
- *Final migration step:* Combination of XMSS and Falcon leads to the smallest increase (+ 6.3 kB)
- Speed-optimized variant of SPHINCS⁺ (SPf) leads to largest certificate chain sizes due to its large signatures (16,7 kB)

16/20 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03

Mixed Certificate Chains for Post-Quantum Authentication Communication Size

Results

- Increase in communication size across all evaluated scheme combinations as a result of larger certificate chains, PQ signatures, and PQ ciphertexts
- Intermediate migration step: XMS+EDS-Kyb leads to smallest total handshake size (10.1 kB)
- Final migration step: XMS+Fal-Kyb has lowest total handshake size (16.1 kB), but slower median TTFB compared to XMS+Dil-Kyb (24.8 kB).

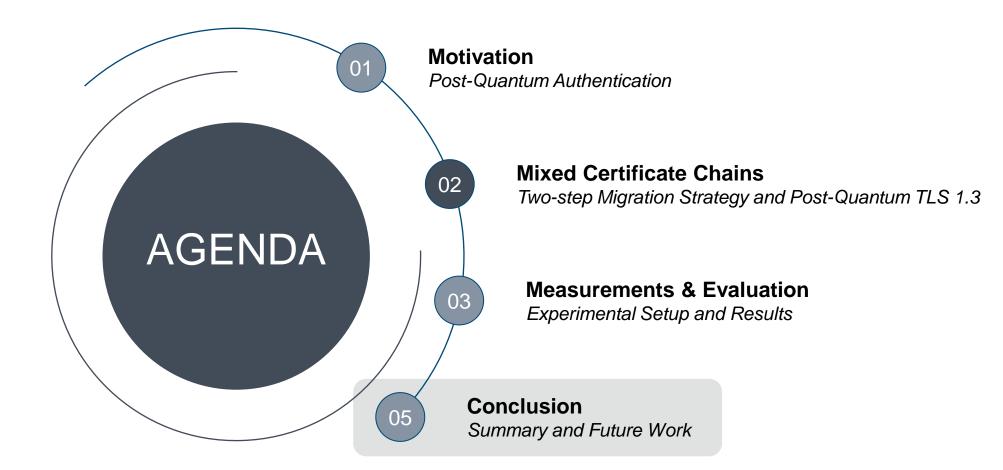
Mixed Certificate Chains for Post-Quantum Authentication Client Program – Peak Memory Usage

	Algorithm		Client: E	mbedded	
	Combination	heap	stack	total	Δ (%)
	EDS-EDH	107	62.8	170	_
	Dil-Kyb	128	111	240	+41.2
Control	Fal-Kyb	119	102	221	+30.2
OID	XMS-Kyb	122	63.5	186	+9.49
	SPf-Kyb	167	61.3	228	+34.4
	SPs-Kyb	129	61.9	191	+12.4
<u>ر</u> [XMS+EDS-Kyb	115	63.3	178	+5.19
Chain	XMS+Dil-Kyb	129	111	240	+41.4
	XMS+Fal-Kyb	119	102	221	+30.2
Certificate	SPf+EDS-Kyb	131	68.3	199	+17.2
lifi	SPf+Dil-Kyb	142	111	253	+49.0
Cert	SPf+Fal-Kyb	135	102	236	+39.3
	SPs+EDS-Kyb	119	63.3	182	+7.43
Mixed	SPs+Dil-Kyb	133	111	244	+43.7
\geq	SPs+Fal-Kyb	126	102	227	+34.0

Peak memory usage of client program on embedded platform

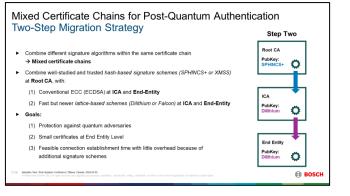
Results

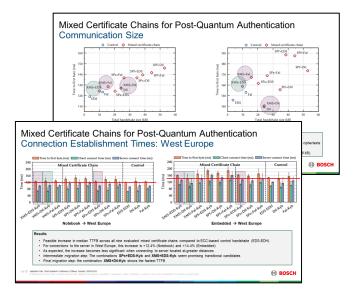
 Heap usage is mostly affected by dynamic memory allocations related to buffers for sending messages


 \rightarrow Increase of heap usage across all evaluated combinations due to larger certificates and cryptographic material.

- Intermediate migration step: Combination of XMSS and ECDSA shows smallest increase (+5.2 %)
- *Final migration step:* Combination of XMSS and Falcon leads to the smallest increase (+30.2 %)
- Dilithium leads to high increase in stack usage, which depends on implementation of underlying hard mathematical problems

 \rightarrow Optimizations may be required for more resource-constrained embedded devices.


Mixed Certificate Chains for Post-Quantum Authentication



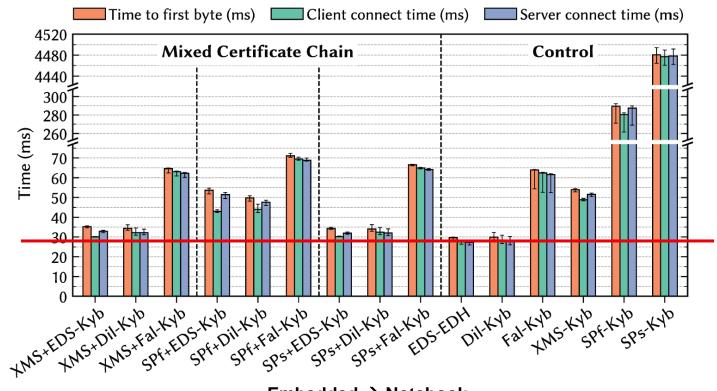
Mixed Certificate Chains for Post-Quantum Authentication Summary

- Proposed migration strategy based on mixed certificate chains is feasible
- Intermediate migration step: XMSS+ECDSA-Kyber shows fast connection establishment times, lowest overhead in communication and code size, as well as lowest memory usage:
 - Hash-based signatures at the root CA level offer conservative security
 - Alleviate drawbacks of hash-based signature schemes
- Final migration step: XMSS+Dilithium-Kyber is feasible for both client devices in terms of connection establishment times:
 - Impact on RAM significant \rightarrow high stack usage of Dilithium's implementation

Thank you!

Questions?

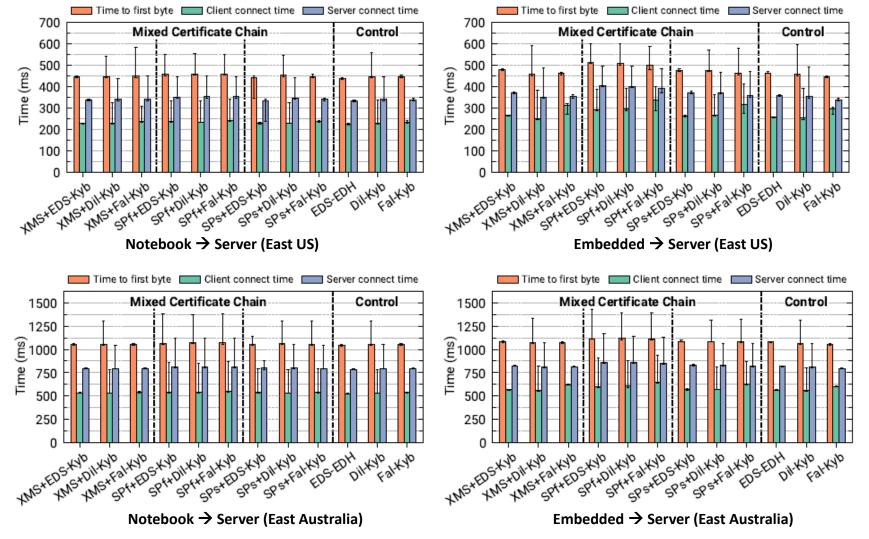
sebastian.paul2@de.bosch.com


Mixed Certificate Chains for Post-Quantum Authentication Benchmark of Evaluated KEMs

Overview of evaluated key establishment schemes including performance benchmark on target platforms.

Algorithm (Parameter)	NIST Level		izes yte)		Performance (ms)				
					Embed.	Notebook	Server		
Key Encapsulation Schemes									
ECDHE (SECP256R1)	×	sk: pk:	32 65	gen: agmt:	1.52 4.40	0.0920 0.255	0.0910 0.271		
Kyber [6] (Kyber512)	1	sk: pk: ct:	1632 800 768	gen: enc: dec:	0.572 0.772 0.772	0.0380 0.0440 0.0490	0.0330 0.0370 0.0430		

Mixed Certificate Chains for Post-Quantum Authentication Connection Establishment Times: Local Server


Embedded → Notebook

Results

- Two control combinations show best performance:
 - EDS-EDH: 29.7 ms
 - Dil-Kyb: 30.0 ms
 - SPHINCS⁺ based control chain not feasible
- Intermediate migration step: Combinations of hashbased signature schemes with ECDSA are feasible
 - SPs+EDS-Kyb: +4.7 ms
 - XMS+EDS-Kyb: +5.6 ms
- *Final migration step:* Similar small increase in median time to first byte:
 - SPs+Dil-Kyb: +4.4 ms
 - XMS+Dil-Kyb: +4.7ms

Mixed Certificate Chains for Post-Quantum Authentication Connection Establishment Times: Remote Servers

24 Sebastian Paul | Post-Quantum Cryptography Conference | Ottawa, Canada | 2023-03-03 © Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

Mixed Certificate Chains for Post-Quantum Authentication Library Code Size

Algorithm	Em	bedded		Notebook			
Combination	Code Size	e Size Overhead		Code Size	Overhead		
	(kB)	(kB)	Δ (%)	(kB)	(kB)	Δ (%)	
EDS-EDH	393	_	_	377	_	_	
Dil-Kyb	633	240	+61.2	484	107	+28.5	
Fal-Kyb	727	334	+85.1	569	192	+51.0	
XMS(+EDS)-Kyb	602	209	+53.2	448	71.5	+19.0	
XMS+Dil-Kyb	649	257	+65.3	503	126	+33.5	
XMS+Fal-Kyb	743	350	+89.2	588	211	+56.0	
SPf(+EDS)-Kyb	607	215	+54.6	457	79.7	+21.2	
SPf+Dil-Kyb	655	262	+66.8	511	134	+35.7	
SPf+Fal-Kyb	748	356	+90.6	596	219	+58.2	
SPs(+EDS)-Kyb	607	214	+54.6	456	79.4	+21.1	
SPs+Dil-Kyb	654	262	+66.7	511	134	+35.5	
SPs+Fal-Kyb	748	355	+90.6	596	219	+58.1	

Total code size of wolfSSL library for evaluated for evaluated scheme combinations

Results

- Integration of hash-based signature schemes and Kyber leads to smallest overhead in code size → enables first migration step
- As Kyber and Dilithium use wolfSSL's implementation of SHA3, combining hash-based signature schemes with Dilithium for a post-quantum secure TLS handshake leads to acceptable overhead
 → enables final migration step:
 - Embedded device: increases by another 12.1 %
 - Notebook: increase by another 14.5 %.
- Since most of required code size ends up in static flash memory, increase should be tolerable even in resource constrained embedded systems.

